
Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

Obstacle Detection, Tracking and Avoidance for a Teleoperated UAV

Marcin Odelga1,2, Paolo Stegagno1 and Heinrich H. Bülthoff1

Abstract— In this paper, we present a collision-free indoor
navigation algorithm for teleoperated multirotor Unmanned
Aerial Vehicles (UAVs). Assuming an obstacle rich environment,
the algorithm keeps track of detected obstacles in the local
surroundings of the robot. The detection part of the algorithm
is based on measurements from an RGB-D camera and a
Bin-Occupancy filter capable of tracking an unspecified number
of targets. We use the estimate of the robot’s velocity to update
the obstacles state when they leave the direct field of view
of the sensor. The avoidance part of the algorithm is based
on the Model Predictive Control approach. By predicting the
possible future obstacles states, it filters the operator commands
to prevent collisions. The method is validated on a platform
equipped with its own computational unit, which makes it self-
sufficient in terms of external CPUs.

I. INTRODUCTION

Multirotor Unmanned Aerial Vehicles (UAVs) offer high
maneuverability, hovering mode, vertical take-off/landing
and other features that constitute an agile platform for
many robotic applications. Unconstrained by ground con-
ditions they can operate on places that are out of reach
for other classical mobile robots, with applications such
as exploration, inspection and surveillance. Considering the
nature of the flying robots and due to legal regulations,
operating in the real-world usually requires a skilled human
operator/supervisor.

The high maneuverability and agility translates into a
requirement for reliable control and good estimation of the
platform’s state. Recently, many commercial remote control
(RC) UAVs have became available on the market. The
classical RC transmitter, which normally allows to control
the robot’s acceleration in lateral directions by commanding
the roll and pitch angles, is usually sufficient to perform
open-air flights. A drift caused by integration of the inertial
measurement can be compensated if the robot is in the line
of sight of the operator and/or the GPS signal is available.
However, if we are interested in operating in an unstructured,
obstacle rich environment, where the GPS signal is unreliable
and there is a limited space for maneuvers and errors, such
a platform might not be sufficient.

Different feedbacks provided to the human operator, can
facilitate the teleoperation task. The role of a haptic feedback,
i.e. the force response of the input device to the user, and its
positive impact on the operator situation awareness have been
investigated in recent works (e.g. [1] and references therein,

1M. Odelga, P. Stegagno and H. H. Bülthoff are with the Max Planck
Institute for Biological Cybernetics, Department of Human Perception
Cognition and Action, Spemannstrasse 38, 72076 Tübingen, Germany
{pstegagno, modelga, hhb}@tuebingen.mpg.de

2M. Odelga is also with the Chair of Cognitive Systems, Department of
Computer Science, University of Tübingen, Tübingen, Germany

Fig. 1. Our quadrotor setup.

[2], [3] and [4]). Another important source of information
are on-board cameras that provide visual feedback to the
operator, widely used in teleoperation [5].

Nevertheless, in order to increase the number of potential
users and applications, the command system of UAVs should
be further simplified by embedding autonomous behaviors.
The most basic are autonomous procedures such as lift-off
and landing, hovering, and way-point navigation (following
predefined trajectory). For widespread adoption of UAV
teleoperation, more advanced features as obstacle detection
and tracking as well as autonomous collision avoidance
should be implemented to increase safety.

We can distinguish two main types of collision-free nav-
igation. When we know in advance the environment and
the desired position that the robot should reach, we usually
deal with a path-planning problem. The goal is to optimize
the trajectory in order to prevent collisions and fulfill other
requirements like the shortest path [6]. The second type of
navigation based on a reactive control law is usually imple-
mented when either the desired state (position or velocity)
or the environment is not known ([7], [8]). Teleoperation
usually falls into this second category, since commands from
the operator are not known in advance and the environment
may be unknown.

Some previous works have dealt with autonomous obstacle
avoidance for teloperated UAVs. In [2] and [3] the obstacle
avoidance is performed using measurements from laser scan-
ners and other range finders. Other works proposes the use
of cameras and optical flow [9], [4]. In [5] readings from an
RGB-D camera are used to feed an artificial potential based
obstacle avoidance module.

In this paper, we present an obstacle avoidance algorithm
for a collision-free teleoperation in unknown, obstacle-rich
environment. Since we are using an RGB-D camera with
limited field of view, we have integrated an obstacle tracking
algorithm with a Model Predictive Control ([10]) inspired
avoidance to modify the velocities commanded by the opera-

Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

Fig. 2. A representation of all frames involved in the control and estimation
of the velocity of the quadrotor.

tor. Usually obstacle tracking is a computationally expensive
task due to the amount of data that needs to be processed.
Since we are performing all the computations on-board, in
our development we have given particular attention to the
computational efficiency of our method. Our UAV platform,
with the RGB-D sensor and the computational unit, is shown
in Fig. 1.

The outline of this paper is as follows. In Section II we
introduce our settings and system architecture. In Section III
we explain the obstacle tracking. In Section IV we describe
the obstacle avoidance method. In Section V we present our
platform in details. In Section IV we provide experimental
results and Section VII concludes the paper.

II. SYSTEM SETUP
In this work, we represent the relevant quantities in the ref-

erence frames defined below and shown in Fig. 2. The quad-
copter frame of reference, defined as Q : {OQ, XQ, YQ, ZQ},
is attached to the middle point of the robot, which is ideally
its centre of mass. It is represented in the common aerospace
North-East-Down (NED) notation (where the XQ axis de-
fines the front direction and the ZQ axis points downward).
The global frame of reference is defined in North-West-Up
(NWU) convention as W : {OW , XW , YW , ZW } with the
ZW axis pointing in the opposite direction with respect to
the gravity vector.

The robot position and orientation in the world frame are
defined as WpQ ∈ R3 and RW

Q ∈ SO(3), respectively.
With WφQ, W θQ, WψQ we denote the roll, pitch and yaw
angles that represent the rotation of the robot. Hence, the
RW
Q matrix is defined as follows:

RW
Q = Rx(π)Rz(

WψQ)Ry(W θQ)Rx(WφQ) (1)

where Rx(·), Ry(·), Rz(·), the basic rotation matrices,
represent the elemental rotations around the X , Y and Z axes
respectively. The Rx(π) matrix describes the transformation
from NED to NWU notation.

It has been proved ([5]) that the robo-centric approach
is convenient in teleoperation tasks, i.e. both, the state of
the system and the commands are expressed in a local,
horizontal frame in which the XY plane is parallel to

the world XWYW plane. Hence, we introduce the frame
H : {OH , XH , YH , ZH}, defined such that its origin is in
the center of mass of the UAV OH ≡ OQ and its ori-
entation differs from the orientation of the world frame
only by the yaw angle and the NED-NWU conversion
RQ
H = Ry(W θQ)Rx(WφQ). In such a frame, the position of

the quadrotor HpQ as well as its yaw angle HψQ are equal
to zero. Therefore, the relevant quantities for the control
purpose in H are:

Hq =
{
vx, vy, vz,

W φQ,
W θQ,

W ψ̇Q

}
, (2)

where HvQ = (vx, vy, vz)
T is the velocity of the UAV. The

state vector Hq includes also the roll and pitch angles and
the angular velocity around the ZH axis. We assume that a
noisy estimate of the robot’s state is available, either using
external or on-board sensors. For example, the roll and pitch
angles can be estimated using a complementary filter as the
one described in [11], [12] using IMU measurements, while
the velocity can be retrieved using a camera-IMU integration
paradigm [13], [14].

The UAV is equipped with an RGB-D camera, which
provides color and depth images at ∼30 fps. To express
its measurements, we define C : {OC , XC , YC , ZC} – the
frame in which the camera captures images. The position
and orientation of C in Q, i.e. QpC and RQ

C , are constant
extrinsic parameters of the camera and are assumed to be
known through a previous calibration. In particular, in our
platform the camera is mounted with a yaw angle of 45° in
order to avoid occlusions by the propellers.

Navigation System Architecture

The navigation system, whose block scheme is shown
in Fig. 3, consists of two main components. The first one
is a local obstacle tracking algorithm based on the Bin-
Occupancy filter first derived in [15]. In principle, we could
use directly the stream of the RGB-D camera in order to
perform the obstacle avoidance. However, the field of view
(FOV) of the camera is limited with respect to the motion
abilities of the UAV and the depth measurements are affected
by noise and occlusions. Through the use of the filter, we
can extend the knowledge of obstacles nearby the robot to
include regions that are not instantly visible and reduce the
measurement noise as well.

In order to detect obstacles, the Bin-Occupancy filter uses
information from depth images and the roll and pitch angles.
Additionally, it is able to propagate in time the state of
the obstacles using the measured velocities. The filtered
obstacles are then provided to the obstacle avoidance module,
which modifies the operator commands when needed in order
to enforce a collision-free flight. The output commands are
provided to the quadrotor as the reference velocity and are
tracked using the controller described in [16].

III. OBSTACLE DETECTION AND TRACKING

In this section we first provide some background on the
Bin-Occupancy filter and then we explain the details of our
implementation.

Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

RGB-D
Camera

depth
image

Bin-Occ
filter

robot
state

obstacle
state

Obstacle
Avoidance

operator
 commands

robot
 commands

Fig. 3. Block diagram of the navigation system.

A. The Bin-Occupancy Filter

The Bin-Occupancy Filter [15] is as an algorithm capable
of tracking multiple targets. It approaches the problem of
multitarget tracking (MTT) by investigating if there is a
target at a given point in space. It uses a model of the
surveillance region which employs small "bins", which a
target may or may not occupy. Hence, its working principle
is opposite to most MTT algorithms, which instead estimate
the number of targets and simultaneously track them. In our
case, we are interested in detecting and tracking obstacles
that might collide with the platform, without the actual need
to know their number. Therefore, the use of the first approach
is more reasonable.

The bins in the surveillance region S are assumed to
be sufficiently small such that each of them is potentially
occupied by at most one target. If two targets (regardless
of their dimension) happen to be located close together, the
bin volume can be reduced so that this assumption remains
valid. Moreover, one target should give raise to only one
measurement, and should generate it independently of the
other targets.

The algorithm has the structure of a recursive filter whose
state is the probability of occupancy of each bin in the region
of interest S. Hence, it is composed of two phases:

1) State Update: At a given time k the event bin i
contains a target is possible if:

a) a new target appears in bin i,
b) a target from bin j moves to bin i,

where i and j identify two generic bins. The second case
includes also the case j = i, i.e., the target in bin i stays in
this bin. These events, considering the assumptions above,
are mutually exclusive - two targets cannot occupy the same
bin.

The state update equation that computes the probability
pk|k(Uk(i)) of bin i being occupied at time k, given a set of
measurements from time 1 up to k − 1 is:

pk|k−1(Uk(i)) = b(i)

+
∑
j

p(i|xj)Ps(xj)pk−1|k−1(Uk−1(j)) , (3)

where Uk(i) ∈ {0, 1} is a random variable which is 1 if
bin i contains a target at time k and 0 otherwise, b(i) is
the probability that a new target appears in bin i, xj is the
middle point of bin j, Ps(xj) is the probability of survival
of a target located at xj to the next time step, p(i|xj) is
the probability that a target located at xj moves to bin i, and
pk−1|k−1(Uk−1(j)) is the probability of bin i being occupied
at time k − 1 given a set of measurements from time 1 to
k− 1. Equation (3) describes the sum of probabilities of the
two independent events a) and b).

2) Measurement Update: Assuming that at time k, the
sensor detects m targets in zs, s ∈ {1, . . . ,m}. The bin-
occupancy probability of bin i is then updated using the
general update equation:

pk|k(Uk(i)) = pk|k−1(Uk(i))

[
(1− Pd(xi)) (4)

+

m∑
s=1

Pd(xi)f(zs|xi)∑
j Pd(xj)f(zs|xj)pk|k−1(Uk(j))

]
,

which describes the probability that at time k, given the
current measurement, bin i is occupied. Pd(xi) describes
the probability of detection of a target located at xi and
f(zs|xi) is a probability density function (pdf) of a single
measurement zs given a target at xi.

The second part of (4) corresponds to the influence of
measurement s ∈ {1, . . . ,m} on the updated bin i, weighted
by the pdf function f(zs|xi), which depends on the measure-
ment location. If there is no measurement, the second part
vanishes.

B. Robo-Centric Obstacle State

In our case, we are interested in tracking the obsta-
cles in a near vicinity of the UAV. Hence, we define a
quantized region of interest S in a cylindrical coordinate
frame M : {OM , PM ,ΨM , ZM} around the robot, wherein
the obstacles will be tracked, and (ρ, ψ, z) a generic point
expressed in M . The PM , ΨM coordinates are, respectively:
the radial and the azimuth distances. The frame is defined
such that OM ≡ OH and ZM ≡ ZH . The azimuth ΨM

reference plane is the surface at 45° to the XHZH plane (i.e.,
when the roll and pitch angles are equal to 0 it coincides
with the XCZC camera plane). The surveillance region
boundaries are defined as (ρSmin

, ρSmax
) and (zSmin

, zSmax
)

on the PM and ZM axes, respectively.
The surveillance region is partitioned into cells, whose size

in M is ∆ρ×∆ψ ×∆z. In the left part of Fig. 4 one "slice"
of S and its partition into bins are shown. The inner circle
represents the restricted area A, which is considered occupied
by the quadrotor, hence no obstacle should get inside A. In
the right part of Fig. 4, we show a 3D view of S and A. The
black cross in the middle represents the quadcopter and its
size with respect to S.

The dimension of cells ∆ρ,∆ψ,∆z is constant in the
cylindrical coordinates, but considering this coordinate sys-
tem properties, the absolute volume of cells differ. The
standard Bin-Occupancy filter (subsection III-A) assumes the
same volume for all the bins, thus one could argue if our
approach fulfills this assumptions. Measurements from the
RGB-D camera consist of depth frames, in which each pixel
describes the distance to the area that it covers. Considering
the model of an ideal pinhole camera, this area changes
proportionally to the distance from the sensor. The volume of
the cells changes on azimuth corresponding to this relation,
thus ensuring the same probability of detection when we take
into account the simultaneous change in volume of the cells
and the pixels relative size.

Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

Fig. 4. Left: top view of the surveillance region divided into partitions.
Right: in blue a 3D view of the surveillance region; in red the restricted
area.

1) State Update: The prediction stage of our algorithm
is performed based on the estimated state of the robot.
The obstacles in S are updated using three independent
transformations:
• a translation along the ZM axis, given the UAV velocity
vz ,

• a rotation around the ZM axis, given the UAV yaw rate
ψ̇,

• a translation on the PMΨM plane, given the UAV
velocities vx and vy .

In order to keep the computational time bounded and limit
the spread of the probabilities in S due to the quantization
noise, these three transformations are not performed every
time that a velocity measurement is available. Instead, the
velocities are integrated and a transformation is performed
only when the corresponding cumulated value reaches the
corresponding cell size.

Similarly, obstacles that leave the surveillance region are
erased from the memory. This also keeps the necessary
memory bounded and independent from the duration of
experiment without limiting the area of exploration. Note
that to compute equation (3) the probability of survival Ps(i)
and the probability of birth of new targets b(i) are needed.
These parameters depend on the environment and should be
set such that a boundary zones should have relatively high
b(i), while a value of Ps(i) < 1 can be used to reduce
artifacts.

2) Measurement Update: Measurements from the camera
(i.e. depth frames) must be preprocessed in order to be
expressed in the same system as the obstacles state. At first
the depth image is scaled down to the resolution of 30x40.
The scaling process significantly reduces the computation
time, but it does not limit the ability to detect obstacles (at a
distance of 1.5 m from the sensor, each pixel cover an area of
4 × 4 cm). The scaled depth image is then transformed into
a point-cloud using the camera intrinsic parameters. Next,
the points are expressed in the frames Q and H using the
camera extrinsic parameters (i.e. QpC and RQ

C) and the roll
and pitch angles. Finally, they are expressed in the cylindrical
frame M . A scheme of the whole process is presented in Fig.
5.

The set of measurements {zs, s ∈ 1, . . . ,m} is computed
as a list of bins that have at least one depth point inside

Camera
Model

RGB-D
Camera

depth
image

point
cloud

Measurement
Model

Meas.
Update

points
in

Fig. 5. Diagram of the measurement update of the Bin-Occupancy filter.

of them. The obstacles state is updated using (4), where the
probability of detection Pd(xi) is defined as:

Pd(xi) = Vi

∏
j

(
1− pk|k−1(Uk(i))

)
·Oi(j)

 , (5)

where Vi is the visibility factor (1 for cells inside the camera
FOV, 0 otherwise) and Oi(j) is the occlusion rate of bin i by
bin j, which depends on the relative location of bin j with
respect to bin i and the camera center. Note that all Oi(j)
can be precomputed in order to save the computational time.

IV. OBSTACLE AVOIDANCE

The obstacle avoidance module is the second part of our
algorithm. At every time step t the algorithm tries to predict
possible collisions by computing the future obstacles state by
performing a sequence of state updates (III-B.1) in different
directions in the range of possible motion. Its working
principle is based on Model Predictive Control (MPC) [10].

A. Model Predictive Control

In MPC, a model of the system is used to calculate the con-
trol input that minimizes an objective function. The system
state is predicted at a finite-time horizon. To determine the
control input, an Optimal Control Problem (OCP) is solved
sequentially at each instance of the system. Then, the first
control input is applied to the system, while keeping the
future steps into account.

An example of such objective function is:

J(x, u) = p(xt) +

N−1∑
t=0

q(xt, ut) , (6)

where the time horizon is expressed as N computation
steps in which the cost, expressed as q(xt, ut) and p(xt),
is computed. The optimization problem consist of finding
the value of ut that minimizes the cost function (6).

B. Commanded Velocity

The quadcopter is commanded in the horizontal frame H ,
i.e. the desired velocity is given in directions parallel and
perpendicular to the gravity vector. Since the platform is
intended for teleoperation, the range of possible commanded
velocities is limited. In particular, we have allowed the
following movements:
• translation along the axis defined by a unit vector

i = [cos(QψC), sin(QψC), 0]T (forward/backward1), to

1the backward motion, since there is no visual feedback, is limited by
the dimension of S.

Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

allow motion in the direction of the camera, where QψC
is the yaw angle of C in Q,

• along the ZH axis (up-/downward),
• rotation around the ZH axis (left/right).

The commanded velocity HvD is:

HvD =

vDxvDy
vDz

 =

cos(QψC)vD
sin(QψC)vD

vDz

 (7)

and H ψ̇D is the commanded yaw rate, where vD, vDz and
H ψ̇D are three inputs provided by the operator.

C. Obstacle Avoidance

In order to avoid obstacles, we first define the probability
of collision with an obstacle in bin i as:

wi · p(Uk(i)) , (8)

which is the product of the probability of bin i being
occupied p(Uk(i)) and weight wi ∈ [0, 1] which expresses
the probability of having a collision with bin i when Uk(i) =
1. In general, wi 6= 0 if and only if xi ∈ A, and it depends
on the location of bin i and on the shape of the quadrotor.

Assuming that collisions with different bins are indepen-
dent, the probability of collision with any obstacle in S at
step k can be expressed as:

1−
∏
i∈S

(
1− wi · p(Uk(i))

)
. (9)

To achieve the collision-free teleoperation, our algorithm
solves an optimization problem over N timesteps:

argmin
ut

J =

N∑
t=1

wt

(
1−

∏
i∈S

(
1− wi · p(Uk+t(i)|ut)

))
+ wψ · |uψ| (10)
+ wz · |uz| ,

and produces a set of N optimal control inputs u?t =
(uρ, uψ, uz)

T and gives the number Ns ≤ N of collision-
free steps. The parameters wψ and wz are weights that
we explain later in this Section. The term p(Uk+t(i)|ut)
expresses the probability of bin i being occupied in step
t. It is determined using the model of the system (i.e.: the
obstacles state and the transformations defined in III-B.1)
and the input ut. The probability of collision in each step t
is weighted by wt.

The control input ut, expressed in the cylindrical coordi-
nates M , is a single transformation of the obstacles state, as
defined in (III-B.1), and must be in the form:

ut =

uρuψ
uz

=

 ∆ρ
n ·∆ψ
m ·∆z

, n ∈ {Z : n∆ψ ∈ [−π2 ,
π
2]}

m ∈ [−3, 3].
(11)

The above relation also constrains our optimization prob-
lem (10) by defining the feasible region of ut. In fact, it
allows, in each prediction step t, to make a translation of
the size of a cell ∆ρ in the azimuth direction of n∆ψ and
a potential change of elevation along the ZM axis.

The number of prediction steps N is not predefined, but
is decided based on the forward velocity commanded by the
operator vD. In particular, it corresponds to the number of
control steps ut needed to achieve the desired translation of
vD ·Th, where Th is the time horizon of the prediction. The
value of N can be computed as:

N =

⌈
vD · Th

∆ρ

⌉
. (12)

Since on the XHYH plane we only allow a for-
ward/backward commanded velocity (IV-B), in (10), with wψ
and wz , we penalize the change of direction and elevation
by adding weighted costs.

Lastly, the reference velocity in the frame H sent to the
robot is

Hvref =



Ns

N Rz

(
π
4

)vD · cos(n∆ψ)

vD · sin(n∆ψ)

0

 if m = 0

Ns

N Rz

(
π
4

) 0

0

m ·∆z/Th

 if m 6= 0.

(13)

Note that the coefficient Ns/N is meant to limit the velocity
when there is no collision-free path over the whole time
horizon Th. In the extreme case when Ns = 0, the reference
velocity is set to zero. This case correspond to the situation
in which obstacles are in front of the robot in all feasible
directions.

To summarize, our obstacle avoidance algorithm produces
a reference velocity (13) as a set of translations of the
obstacles state by minimizing the difference between the
commanded velocity (7) and the output, reference signal.
There are three possible cases:
• vref = vD when there is no predicted collision on the

desired direction,
• lateral or vertical avoidance by projecting the desired

velocity vD on a new, collision-free direction,
• limit of the commanded velocity when there is no fully

collision-free direction.
Remark 1: Although we do not allow the operator to

command any lateral motion, the algorithm, knowing the
obstacles state, can perform such a motion.

Remark 2: The algorithm cannot perform any motion by
itself, any obstacle avoidance action is only possible under
a presence of the operator input.

Remark 3: In order to compute (10), it is not needed to
perform the prediction of the obstacles state in the whole
region S. In fact, to reduce the computational time, it is
possible to compute only the future state of the bins that
have wi 6= 0.

V. PLATFORM DESCRIPTION

The UAV used in the development of the presented naviga-
tion system is a MK-Quadro quadcopter from MikroKopter.
It consists of a frame with four 10 inch propellers powered
by brushless motors, motor controllers and a flight controller

Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

board with an 8-bit microcontroller. The main board includes
an inertial measurement unit (IMU), i.e., two 3-axis, 10-bit
analog sensors: an accelerometer (with a range of ±2 g) and
a gyroscope (±300 deg/s range), both read with an analog to
digital converter. The board communicates with the brushless
motor controllers through a standard I2C bus and offers two
serial connections with a 115 200 Bd baud rate.

The original firmware, which allows us to drive the
quadcopter with a remote control, has been replaced with our
own software that has new features and a different interface
that allows us to control the robot through serial connection.
It is used to send attitude (roll and pitch angles, and yaw rate)
and thrust commands to the microcontroller at ~100 Hz, and
to receive low-frequency data (~20 Hz) (i.e. battery level).
The platform is powered by a 2600 mAh LiPo battery that
provides approximately 10 min of flight.

In addition, we have equipped the system with ODROID-
XU3, a double quad core2 ARM microprocessor board that
provides enough computational power to make the system
independent of external computational units. Communication
with the low-level flight controller is carried out by two
XU3’s serial ports. Power to the board and its peripherals
is provided by a 5 V step-down voltage regulator connected
to the LiPo battery. The board can exchange data with the
fixed operator desk using a USB Wi-Fi adapter.

An on-board RGB-D sensor (Asus Xtion Pro) is used as
the source of data for obstacle detection providing 640×480
RGB and depth images at ~30fps. It is mounted approx-
imately 45° to the right with respect to the front propeller
and rotated 90° around the camera axis to extend the vertical
field of view (FOV). It is also rotated downward at about 20°
to increase the number of visual features inside the FOV by
framing a bigger portion of the ground, while simultaneously
offering a horizontal line of sight to the operator. The Odroid
board and the camera are attached rigidly to the frame with
3D printed parts. The complete platform depicted in Fig. 1
weights approximately 1.3 kg.

The velocity of the UAV is provided by an external
tracking system. Hence, we are able to evaluate the per-
formance of the tracking and obstacle avoidance algorithms
independently from state estimation errors.

VI. EXPERIMENT
In order to validate the presented algorithm we performed

two experiments: avoidance of a horizontal and a vertical,
rectangular obstacles. In both experiments we commanded
the robot to fly towards the outer edge of the obstacle,
simulating a situation in which an operator, relying only on
the visual and haptic feedbacks, may not be certain if the
robot can pass safely near the obstacle. In such cases, the
avoidance algorithm should alter the commanded velocity.

The surveillance region S is parametrized as:

ρ ∈ [0, 1.5m], z ∈ [−1.5m, 1.5m],

∆ρ = 0.1m, ∆ψ =
1

30
π rad, ∆z = 0.1m.

2four Cortex-A15 at 2.0 Ghz, four Cortex-A7 and Heterogeneous Multi-
Processing (HMP) solution for tasks management

0.4
0.2

0
-0.2

-0.4
-0.6

1.5

1

0.5

0

-0.5

-1

1.2

1

0.8

1.4

1.6

-1.5

Fig. 6. Avoidance of a vertical obstacle. In green the trajectory of the
robot. In blue the velocity commanded by the operator. In red the reference
velocity from the obstacle avoidance module.

-0.5

-11

0.5

0

-0.5

-1

-1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Fig. 7. Avoidance of a horizontal obstacle. In green the trajectory of the
robot. In blue the velocity commanded by the operator. In red the reference
velocity from the obstacle avoidance module.

The restricted area A occupied by the robot (i.e.: the set
of bins that the algorithm keeps obstacle-free) is defined as:

ρ ∈ [0, 0.5m], z ∈ [−0.4m, 0.3m] .

The weights used in the cost calculation (10) are:

wi =

{
1 if x(i) ∈ A
0 if x(i) 6∈ A,

wt = 10

wψ = 3

wz = 2 .

These values have been tuned according to heuristic criteria
through experiments. Finding optimal weights is not trivial
as they depend on the desired behavior of the platform in
presence of obstacles which depends on the task and the
operator himself.

The operator input, desired velocity (7), is limited with as:

vD, vDz ∈
[
− 0.5

m

s
, 0.5

m

s

]
, H ψ̇D ∈

[
− 1

rad

s
, 1
rad

s

]
.

while the time horizon is assumed to be Th = 1s.

Preprint - final, definitive version available at http://www.ieeexplore.com/ accepted for ICRA2016 May 2016

1.5

1

0.5

0

-0.5

-1

-1.5-1.5

-1

-0.5

0

0.5

1

1.5

1.5

-1.5

-1

-0.5

0

0.5

1

Fig. 8. Three frames of the estimated obstacles state in the horizontal avoidance experiment.

We present the results of the two experiments in Fig. 6
and Fig. 7. In green, we show the trajectory of the robot.
The blue arrows are the velocities commanded by the user
HvD and in red, the reference velocities Hvref altered by
the obstacle avoidance module. From the plots, it is clear
how a horizontal or a vertical component are added to the
motion in order to prevent collisions. The interested reader is
invited to watch the accompanying video for a clip of these
experiments.

In Fig. 8, we show three frames of the estimated obstacles
states in the horizontal avoidance experiment. Each bin in S
is represented as a sphere whose radius is proportional to the
probability of occupancy. The color of the sphere depends on
the zM coordinate. The first frame correspond to the robot
during takeoff, hence the only visible obstacles are part of
the ground. In the second frame, the robot is approaching the
obstacle, and in the last frame, after avoidance, the obstacle
is on the left of the robot. In general, the frames show that
the Bin-Occupancy filter is able to correctly estimate the
obstacles state.

VII. CONCLUSION

In this work, we have developed a method for collision
avoidance for UAVs using a single RGB-D camera. In order
to extend the limited field of view of the camera, we have
implemented an obstacle tracking algorithm based on the
Bin-Occupancy filter. The estimated obstacles are used in
an algorithm inspired by Model Predictive Control in order
to modify the velocity commanded by the operator and
avoid obstacles. We have successfully performed several
experiments to validate our approach, performing all the
computations on-board.

In future, we plan to integrate on our platform a visual
odometry algorithm to estimate on-board the velocity of the
robot without the need of external sensors.

REFERENCES

[1] T. M. Lam, H. W. Boschloo, M. Mulder, and M. M. van Paassen,
“Artificial force field for haptic feedback in UAV teleoperation,” IEEE
Trans. on Systems, Man, & Cybernetics. Part A: Systems & Humans,
vol. 39, no. 6, pp. 1316–1330, 2009.

[2] M.-D. Hua and H. Rifai, “Obstacle Avoidance for Teleoperated Under-
actuated Aerial Vehicles using Telemetric Measurement,” IEEE Conf.
on Control and Decision, 2010, pp. 262–267.

[3] S. Omari, M.-D. Hua, G. Ducard, and T. Hamel, “Bilateral Haptic
Teleoperation of an Industrial Multirotor UAV,” in Gearing up and ac-
celerating cross-fertilization between academic and industrial robotics
research in Europe, Springer International Publishing, 2014, pp. 301-
320.

[4] R. Mahony, F. Schill, P. Corke, and Y. S. Oh, “A new framework for
Force Feedback Teleoperation of Robotic vehicles based on Optical
Flow,” IEEE Conference on Robotics and Automation, 2009, pp.
1079–1085.

[5] P. Stegagno, M. Basile, H. H. Büthoff, and A. Franchi, “A Semi-
autonomous UAV Platform for Indoor Remote Operation with Visual
and Haptic Feedback,” IEEE International Conference on Robotics and
Automation (ICRA 2014), IEEE, Piscataway, NJ, USA, 3862-3869.

[6] D. Ferguson, M. Likhachev, and A. Stentz, “A Guide to Heuristic-
based Path Planning,” Proceedings of the International Workshop on
Planning under Uncertainty for Autonomous Systems, International
Conference on Automated Planning and Scheduling (ICAPS), June,
2005.

[7] M. Becker, C. M. Dantas, and W. P. Macedo, “Obstacle Avoidance
Procedures for Mobile Robots,” ABCM Symposium Series in Mecha-
tronics, vol. 2, pp. 250-257, 2006.

[8] M. Zohaib, M. Pasha, R. A. Riaz, N.Javaid, M. Ilahi, and R. D. Khan,
“Control Strategies for Mobile Robot With Obstacle Avoidance,”
arXiv:1306.1144.

[9] J. Serres, F. Ruffier, and N. Franceschini, “Two optic flow regulators
for speed control and obstacle avoidance,” International Conference
on Biomedical Robotics and Biomechatronics, 2006, pp. 750–757.

[10] E. F. Camacho, C. Bordons, “Introduction to Model Predictive Con-
trol,” in Model Predictive Control, London: Springer-Verlag, 2007, pp.
1-11.

[11] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear complementary
filters on the special orthogonal group,” IEEE Trans. on Automatic
Control, vol. 53, no. 5, pp. 1203–1218, 2008.

[12] P. Martin and E. Salaün, “The true role of accelerometer feedback
in quadrotor control,” IEEE Int. Conf. on Robotics and Automation,
Anchorage, AK, May 2010, pp. 1623–1629.

[13] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry estimation
for RGB-D cameras,” IEEE Int. Conf. on Robotics and Automation,
Karlsruhe, Germany, May 2013, pp. 3748–3754.

[14] Z. Fang and S. Scherer, “Real-time Onboard 6DoF Localization of
an Indoor MAV in Degraded Visual Environments Using a RGB-D
Camera,” IEEE International Conference on Robotics and Automation,
May 2015.

[15] O. Erdinc, P. Willett, Y. Bar-Shalom, “The Bin-Occupancy Filter and
Its Connection to the PHD Filters,” IEEE Trans. on Signal Proc., SP-
57, November 2009, 4232-4246.

[16] D. J. Lee, A. Franchi, H. I. Son, H. H. Bülthoff, and P. Robuffo
Giordano, “Semi-autonomous haptic teleoperation control architecture
of multiple unmanned aerial vehicles,” IEEE/ASME Trans. on Mecha-
tronics, Focused Section on Aerospace Mechatronics, 2013, vol. 18,
no. 4, pp. 1334–1345.

