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Adaptive Super Twisting Controller for a Quadrotor UAV

Sujit Rajappa1, Carlo Masone1, Heinrich H. Bülthoff1,2 and Paolo Stegagno1

Abstract— In this paper we present a robust quadrotor
controller for tracking a reference trajectory in presence of
uncertainties and disturbances. A Super Twisting controller
is implemented using the recently proposed gain adaptation
law [1], [2], which has the advantage of not requiring the
knowledge of the upper bound of the lumped uncertainties. The
controller design is based on the regular form of the quadrotor
dynamics, without separation in two nested control loops for
position and attitude. The controller is further extended by a
feedforward dynamic inversion control that reduces the effort
of the sliding mode controller. The higher order quadrotor
dynamic model and proposed controller are validated using a
SimMechanics physical simulation with initial error, parameter
uncertainties, noisy measurements and external perturbations.

I. INTRODUCTION

In the past decade we have witnessed to the blooming of
aerial robotics as a research domain. Unmanned Aerial Ve-
hicles (UAVs) are increasingly used in industrial and civilian
applications because their mobility makes them capable to
access dangerous areas both in indoor and outdoor scenarios
and to tackle a wide variety of tasks. Initially the focus
of research was on navigation tasks (mapping, surveillance,
etc.), but recently the attention has shifted more towards
physical interaction with the environment and manipulation
of objects [3], [4], [5], [6], [7], [8].

From this shift towards physical interaction it is emerging
the need to have not only good accuracy in trajectory
tracking but also robustness to perturbations, such as external
disturbances (e.g.: wind gusts) and model uncertainties (e.g.:
change in mass when grasping an object).

Indeed, classical control approaches such as nonlinear
dynamic inversion and feedback linearization [9] are known
for their vulnerability to model uncertainties [10]. Sliding
mode control [11] appears to be a promising solution to
deal with model uncertainties because it has well known
perturbations rejection properties [12]. Yet, this control strat-
egy is also known to suffer from chattering which might
reduce the performance and degrade the actuators. In order
to overcome this problem, adaptive sliding mode strategies
have been proposed both for quadrotors [13] and for fixed
wing aircrafts [14].

All the cited control approaches have some limitations.
While the controller proposed in [13] still suffers from
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chattering, [10] shows limited robustness to parameter uncer-
tainties, and [11] requires the knowledge of the upper bound
on perturbations which in most practical cases is impossible
to estimate, therefore leading to over-conservative tunings.
Taking into account all the limitations mentioned above,
in this paper we implement an Adaptive Super Twisting
Controller (ASTC) with the following properties:

1) It considers and compensates for all the uncertainties
(parametric, model, disturbances) lumped together.

2) It does not require any knowledge of the upper bound
of the uncertainties.

3) It adapts the gains rather than the model parameter [1].
In this way, the gains are lowered whenever possible,
thus reducing control actions, chattering and noise
amplification.

4) It uses a feedforward dynamic inversion (FF) to reduce
the discontinuous control, thus improving performance
and further reducing chattering.

The rest of the paper is organized as follows. We introduce
the preliminary system description along with the modeling
and adaptation model for control in Sec. II. Then in Sec. III
we describe the adaptive super twisting controller. In Sec. IV
we validate the controller and the model adaptation by means
of physical simulations. Conclusions and future perspectives
are discussed in Sec. V.

II. PRELIMINARY SYSTEM DESCRIPTIONS

The quadrotor is a popular configuration of UAV, with four
coplanar propellers. Having six degrees of freedom (full 3D
pose) and four control inputs (the propellers) it is an under-
actuated mechanical system. In this section we introduce the
quadrotor model and define the system dynamics in regular
form which will be used to design the controller.

A. Dynamic System Model

Let us define the world inertial frame as FW :
{OW ,XW ,Y W ,ZW } and the body frame attached to
the quadrotor as FB : {OB ,XB ,Y B ,ZB}, where OB

coincides with the quadrotor Center of Mass (CoM). FB
follows the NED (North-East-Down) convention. Let p =[
x y z

]T ∈ R3 describe the position of OB in FW and
let Θ =

[
φ θ ψ

]T ∈ R3 be the standard roll, pitch and
yaw angles respectively which describe the orientation of FB
in FW , with φ, θ ∈ [−π/2, π/2] and ψ ∈ [0, 2π]. The basic
quadrotor states are therefore[

pT ΘT
]T

=
[
x y z φ θ ψ

]T
(1)
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Let RΘ = Rz(ψ)Ry(θ)Rx(φ) ∈ R3×3 represent the

transformation from FB to FW :

RΘ =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (2)

where c? = cos(?), s? = sin(?) and Rz , Ry , Rx denote the
3× 3 fundamental rotation matrices around the Z, Y and X
axes respectively.

To reduce the complexity of the arising quadrotor model,
we consider the following standard assumptions:

Assumption 1: FB is aligned with the principal axes of
the quadrotor.

Assumption 1 ensures that the inertial matrix IB is
diagonal.

Assumption 2: The inertial and gyroscopic effects arising
from propellers and the motors are rejected by the feedback
nature of the controller considering them as second-order
disturbances.

With the above mentioned assumptions and utilizing the
standard Newton-Euler equations of motion, the dynamical
equations corresponding to the transational and rotational
dynamics of the quadrotor can be written as [15]

mp̈ = mge3 − ρRΘe3 + f ext (3)
IBω̇B = −ωB × IBωB + τ + τ ext (4)

Θ̇ = T (Θ)ωB (5)

where m is the mass of the quadrotor, e3 =
[
0 0 1

]T
is

the standard ZW -axis representation from NED directions,
g is the acceleration due to gravity, p̈ =

[
ẍ ÿ z̈

]T
is

the acceleration of the quadrotor in FW , ρ is the thrust
control input generated by the propellers along e3 in FB ,
f ext =

[
fextx fexty fextz

]T ∈ R3 is the external force
acting on the quadrotor in FW , ω̇B =

[
ṗ q̇ ṙ

]T ∈
R3 is the angular acceleration of the quadrotor w.r.t. FB ,
τ =

[
τx τy τz

]T ∈ R3 is the input moment expressed
in FB , T (Θ) ∈ R3×3 is the transformation matrix from
ωB ∈ so(3) to the Euler angle rates Θ̇ and τ ext =[
τextx τexty τextz

]T ∈ R3 is the external moment that is
acting on the quadrotor.

Equations (3)−(5), can be written in state-space form as
explained in [9]:

ẋ = f (x) + g (x)u (6)

where

x =
[
x y z φ θ ψ ẋ ẏ ż p q r

]T ∈ R12×1

(7)

f (x) =



ẋ
ẏ
ż

f(4,1)
f(5,1)
f(6,1)

0
0
g

Iy−Iz
Ix qr

Iz−Ix
Iy pr

Ix−Iy
Iz pq



, g (x) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

g(7,1) 0 0 0
g(8,1) 0 0 0
g(9,1) 0 0 0

0 1
Ix 0 0

0 0 1
Iy 0

0 0 0 1
Iz



(8)

u =


u1
u2
u3
u4

 =


ρ
τx
τy
τz

 (9)

with

f(4,1) = p+ q sinφ tan θ + r cosφ tan θ

f(5,1) = q cosφ− r cosφ

f(6,1) = q sinφ sec θ + r cosφ sec θ

g(7,1) = − 1
m (cosφ cosψ sin θ + sinφ sinψ)

g(8,1) = − 1
m (cosφ sinψ sin θ − sinφ cosψ)

g(9,1) = − 1
m (cosφ cos θ) .

With respect to the control input (9), we make the following
assumption:

Assumption 3: The control input is bounded, i.e., u ∈
U = {u? ∈ [umin,umax]}.
It is well known that the control input in (9) is related to the
speed of the propellers. Hence, Assumption 3 implies that
the speed of the propellers is always feasible.

B. Regular Control Form

It is well known that the quadrotor is dynamically feed-
back linearizable with output

y = h (x) =
[
x y z ψ

]T
. (10)

Namely, we can transform (6)−(9) into a non-interacting
system as shown in [9]. First, let us introduce a new control
input, i.e, ū

ū =


ü1
u2
u3
u4

 =


ū1
u2
u3
u4

 (11)

obtained by considering a dynamic extension of (6). Here ū1
is obtained by the double differentiation of u1 as,

u1 = %, (12a)
%̇ = ς, (12b)
ς̇ = ū1. (12c)

The new extended system will have the form

˙̄x = f (x̄) + g (x̄) ū (13)
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where the extended state is

x̄ =
[
x y z φ θ ψ ẋ ẏ ż % ς p q r

]T ∈ R14×1

(14)
and

f (x̄) =



ẋ
ẏ
ż

f(4,1)
f(5,1)
f(6,1)
g(7,1)%
g(8,1)%

g + g(9,1)%
ς
0

Iy−Iz
Ix qr

Iz−Ix
Iy pr

Ix−Iy
Iz pq



, g (x̄) =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 1

Ix 0 0
0 0 1

Iy 0

0 0 0 1
Iz



. (15)

Finally, there exists a diffeomorphism Φ(x̄) such that the
coordinates transformation z = Φ(x̄) defined by


z1 = x, z2 = ẋ, z3 = ẍ, z4 =

...
x,

z5 = y, z6 = ẏ, z7 = ÿ, z8 =
...
y ,

z9 = z, z10 = ż, z11 = z̈, z12 =
...
z ,

z13 = ψ, z14 = ψ̇

(16)

transforms (13) into a regular form in which the dynamics
of the output y in (10) are decoupled into a chain of
integrators. The system transformation with the new states
z = [z1, z2, . . . .., z14]

T can be written in state-space form as

ż =



z2
z3
z4

ax(z)
z6
z7
z8

ay(z)
z10
z11
z12
az(z)
z14
aψ(z)



+



03×4
bx(z)
03×4
by(z)
03×4
bz(z)
01×4
bψ(z)




ū1
u2
u3
u4

 , (17)

where

ax(z)

ay(z)

az(z)

 =

(
−%S(RΘe3)RΘI

−1
B S(ω)IBω

m

−RΘS(Θ̇)2e3%
m − 2RΘS(Θ̇)e3ς

m

)
︸ ︷︷ ︸

3×1bx(z)

by(z)

bz(z)

 =

−RΘe3
m︸ ︷︷ ︸

3×1

%S(RΘe3)RΘI
−1
B

m︸ ︷︷ ︸
3×3


aψ(z) = [Ṫ (Θ)ω − T (Θ)I−1B S(ω)IBω]3

bψ(z) =

[
03×1 T (Θ)I−1B︸ ︷︷ ︸

3×3

]
3

.

(18)

Here S (ω) is the skew-symmetric matrix of ω such that
ṘΘ = RΘS (ω) and S(Θ̇) is the skew-symmetric matrix of
Θ̇ which describe the Euler angle rates in FW . The subscript
3 in aψ(z) and bψ(z) means that only the third row of the
expression is selected. The system equations expressed in z
and ū are

[....
p

ψ̈

]
=


....
x....
y
....
z

ψ̈

 =


ż4
ż8
ż12
ż14

 =


ax(z)
ay(z)
az(z)
aψ(z)


︸ ︷︷ ︸

,a(z)

+


bx(z)
by(z)
bz(z)
bψ(z)


︸ ︷︷ ︸

,b(z)

ū. (19)

As clear from (16), the state of the new system includes the
jerk, which in general is not directly measurable. Therefore,
for control purpose it can be computed as

...
p = − 1

m
(RΘS(ω)e3%+RΘe3ς) . (20)

For the new system model representation given by (19) to
hold, we take the following assumption:

Assumption 4: The roll and pitch angles φ and θ are
limited to (−π/2, π/2).
Assumption 4 ensures that the matrix b (z) in (19) is non-
singular, because T (Θ) in (18) is nonsingular, and always
has rank(b (z)) = 4, therefore being invertible.

C. Uncertainties

The model presented in (19) depicts the system without
uncertainties. To incorporate the effect of inexact knowledge
of the parameters and of disturbances, we consider that:

1) the quadrotor is subject to external disturbances ζ that
act w.r.t. the CoM as force and torque wrenches. The
dynamic equation (19) becomes[....

p

ψ̈

]
= a (z) + b (z) (ū+ ζ) ; (21)

2) only the dynamic parameters m, IB are uncertain.
Following these assumptions the above model (21) becomes[....

p

ψ̈

]
= an + ∆a+ bn (ū+ ζ) + ∆b (ū+ ζ) =

= an + bnu+ ξ , (22)

where
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Fig. 1: Control scheme architecture. Jerk (
...
p) and snap (

....
p ) required

in the adaptive controller and nominal feedback are calculated from
acceleration (p̈) of the quadrotor.

• an and bn describe the nominal model of the robot;
• ∆a and ∆b contain the parametric uncertainties;
• ξ = bnζ + ∆a + ∆b(u + ζ) is the vector of lumped

perturbations.
Note that bn is always full rank (Assumption 4), so the
lumped perturbations satisfy the matching condition. More-
over, we make an additional assumption:

Assumption 5: ξ is bounded as ‖ξ‖2 ≤ ξmax, but the
bound ξmax ≥ 0 is unknown.

In practice it is difficult to estimate the upper bound
on ξ. This could lead to over-conservative gain tuning and
consequently to unnecessary high control actions, chattering
and noise amplification. Finally, we want to underline that
we consider the case that only the dynamic parameters are
uncertain.

III. CONTROL

In this section we propose our solution for trajectory
tracking using a quadrotor in the presence of the lumped
disturbance ξ. The trajectory is specified as a desired position
pd(t) =

[
xd yd zd

]T
with its derivatives up to the snap....

p d(t), and desired yaw ψd and its derivatives up to the
second order ψ̈d. Such a trajectory can be easily defined
offline or computed online using input shaping or filtering
techniques. We assume that the state variables defined in (16)
are available at every time instant.

The tracking controller is designed as a robust law ū of
the form

ū = ūsm + ūff , (23)

where
• ūsm is a term based on a sliding mode approach;
• ūff is a feedforward term based on the dynamic inver-

sion of the nominal model.
In order to compute u from ū, we need to double integrate

u1. In the remaining of this section we detail the two terms
that compose ū in (23).

A. Adaptive Super Twisting Control

The sliding mode control term ūsm is designed to steer
to zero the tracking errors of position ep = p − pd =[
ex ey ez

]T ∈ R3 and yaw error eψ = ψ − ψd in
presence of the uncertainties ξ. As seen earlier in Sec. II-B,
in the model in regular form (19), the output is decoupled.
Therefore, the sliding variable is chosen as

σ =


σx
σy
σz
σψ

 =


...
e x + λx3

ëx + λx2
ėx + λx1

ex...
e y + λy3 ëy + λy2 ėy + λy1ey...
e z + λz3 ëz + λz2 ėz + λz1ez

ėψ + λψ1eψ

 , (24)

where λ ∈ Rn×n is a positive definite diagonal matrix.
Using (19), the time derivative of σ is

σ̇ =


−....
x d + λx3

...
e x + λx2

ëx + λx1
ėx

−
....
y d + λy3

...
e y + λy2 ëy + λy1 ėy

−....
z d + λz3

...
e z + λz2 ëz + λz1 ėz

−ψ̈d + λψ1 ėψ

+ a (z) + b (z)ū

(25)
showing that σ has relative degree one with respect to ū.
To achieve the 2-sliding mode σ = σ̇ = 0, we implement
ūsm according to the well known Super Twisting controller
(STC) [12], [17]. The expression of the standard STC is

ūsm = b (z)
−1
(
−α |σ|

1
2 sign (σ) + v

)
v̇ =

{
−ūsm if |ūsm| > ūm
−βsign (σ) if |ūsm| ≤ ūm

.
(26)

Here, ūm denotes an upper bound for ūsm and α, β are
definite positive diagonal matrices of gains. The control
law (26) has two remarkable properties, i) it does not require
the knowledge of σ̇ and therefore of the snap

....
p and yaw

acceleration ψ̈, and ii) the discontinuous function sign(σ)
is integrated, thus significantly attenuating chattering.

From [12] it is proved that the standard STC controller
achieves finite-time convergence to the 2ndorder-sliding
manifold with few assumptions. In particular, it is necessary
to choose the gains α and β high enough, according to the
upper bound on ξ. Since the upper bound on ξ is not known
(Assumption 5) we adapt the gains online according to the
law proposed in [1], [18],

α̇ =

 ωα

√
γ

2
sign (|σ| − µ) , if α > αm

η, if α ≤ αm
β = 2 εα , (27)

where
• ωα,γ,η are arbitrary positive constants;
• αm is an arbitrary small positive constant introduced to

keep the gains positive;
• µ is a positive parameter that defines the boundary layer

for the real sliding mode.
Under few mild assumptions [1], the STC with adaptive
gains (27) achieves finite-time convergence to a real 2-sliding
mode ‖σ‖ ≤ µ1 and ‖σ‖ ≤ µ2, with µ1 ≥ µ and µ2 ≥ 0.
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Fig. 2: Physical quadrotor model constructed in SimMechanics.

Note that the choice of the parameter µ in (27) is critical. A
wrong choice of this parameter could lead to either instability
and the control gains shooting up to infinity or to poor
accuracy [2]. Here, we choose µ as a time-varying parameter
function according to [2]. Therefore µ is given by

µ(t) = 4α(t)Te , (28)

where Te is the sampling time for the controller.
An important remark on (27) is that the gain adaptation

law does not need any knowledge of the upper bound of the
external perturbations ξ. Moreover, the gains α and β are
not chosen according to a worst case uncertainty, but rather
they are increased only when necessary. This further reduces
the chattering in the ASTC.

B. Feedforward Control

The feedforward component ūff based on the dynamic
inversion of the nominal model from (23) is the wrench that
needs to be applied to the nominal model of the UAV to track
a reference trajectory, in the absence of initial error. The ūff
part of the control wrench decreases the magnitude of sliding
mode control ūsm, thus helping in reducing the gains of the
ASTC and hence attenuates chattering. The expression of
ūff is obtained by dynamic inversion of (19) as

ūff = b (z)
−1




....
x d....
y d....
z d
ψ̈d

− a (z)

 . (29)

Figure 1 shows the control scheme architecture of the devel-
oped controller.

IV. PHYSICAL SIMULATIONS

The quadrotor model (19), reformulated with the change
of coordinates in (16), and the capability of the developed
adaptive super twisting controller defined by (26) and (27)
are extensively verified by means of physical simulations. We
have built a quadrotor system model in SimMechanics1 using
joints, constraints and force elements. SimMechanics formu-
lates and solves the equations of motion for the complete
3D mechanical multibody system and is interfaced with the
Matlab/Simulink environment for rapid control design and
implementation.

1http://www.mathworks.com/products/simmechanics/
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Fig. 3: Results of robust trajectory tracking for position p and
yaw ψ. 3(a): Desired (dashed black line) and current (solid line)
position pd in x (red), y (green) and z (blue). 3(b): Desired (dashed
line) and current (solid line) yaw (red) ψd. 3(c–d): behavior of the
position/orientation tracking errors (ep, eψ).

Our aim in this simulation is (i) to prove the robustness
of the developed ASTC, (ii) to demonstrate the ability to
perform aggressive trajectory tracking maneuvers and (iii)
to compare it with standard STC. In the rest of this section
we provide a brief description of the experimental setup
(Sec. IV-A), we show and discuss simulation results of ASTC
during aggressive maneuver trajectory tracking (Sec. IV-B)
and we compare in detail the ASTC with the standard STC
(Sec. IV-C).

A. Experimental Setup

The physical quadrotor model in SimMechanics, shown in
Fig. 2, is designed using the parameters of a real quadrotor
with total mass m = 2.6Kg and inertial parameters IB =[
Ixx Iyy Izz

]T
=
[
0.0488 0.0488 0.0956

]T
Kg ·m2.

Note that in the control law these parameters will be
considered uncertain. The other system parameters, the lift
coefficient b, the drag coefficient d and the arm length l,
are considered to be known without uncertainty. The system
state, namely the position p =

[
x y z

]T
, linear velocity

ṗ =
[
ẋ ẏ ż

]T
, acceleration p̈ =

[
ẍ ÿ z̈

]T
in FW and

the angular velocity ωB =
[
p q r

]T
in FB are provided

to the controller as noisy measurements, with an additional
gaussian noise to resemble realistic measurements from an
external tracking system and an onboard IMU.

B. Robustness of ASTC

The desired quadrotor trajectory pd provided as reference
to the controller is a sinusoid along the X and Y axes. The
highly aggressive nature of the trajectory is highlighted by
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the roll and pitch angles during the tracking that reaches up to
±20°. In order to highlight the robust nature of the controller,
the initial position error is set to pe =

[
0 0 1

]T
m. Addi-

tionally, during the execution of the trajectory, the quadrotor
is subjected to high force disturbance in all the principal
axes (fextx = 2N , fexty = 3N and fextz = 1N ) which are
applied and removed at different time instants, as shown in
Fig. 4(a). Furthermore, a parameter uncertainty of 10% is
included in the controller for the mass m and inertial matrix
IB . Therefore this simulation aims to prove the robustness,
asymptotic trajectory tracking and stability performance of
the controller in presence of initial error, noisy system state,
parameter uncertainty and external disturbance.

Figure 3(a) shows the desired position pd and the current
position p. Figure 3(b) shows the desired yaw ψd and the
current yaw ψ along with the yaw error eψ in Fig. 3(d).
As seen from tracking error ep in Fig. 3(c), the controller
shows asymptotic stability even when many nonidealities are
are introduced in the model.

Figure 4(a) displays the external force disturbance fext
applied on the quadrotor in all the principal axes. The
sliding variable σ, shown in Fig. 4(b), σ varies with high
frequency because of the noise affecting the system state.
Figure 4(c) shows the adaptation of the α gain given by (27).
Comparing Fig. 4(a) and Fig. 4(c), it is possible to notice
the spikes in the α gains, due to their adaptation when
the disturbance forces are applied or removed. A similar
behavior can be observed in the nominal feedforward input
computed using (29) and shown in Fig. 4(d). The control
input u and the gain adaptation of α are discussed in detail
in Sec. IV-C.

C. Comparison of ASTC and STC

The same physical simulation described in Sec. IV-B is
performed also for the standard version of the super twisting
controller (STC). Figure 5 shows thrust ρ, roll torque τx,
pitch torque τy and yaw torque τz computed in the two
simulations. It is clear from Fig. 5(b) that the control inputs
computed by the standard STC are affected by continuous
chattering, whereas Fig. 5(a) shows that the chattering is
substantially reduced and is only present when the gains are
adapting to high values to counterbalance the external force
disturbance f ext.

Figure 6 shows the position error ep of the ASTC and
STC. Clearly, the chattering on the control inputs reflects
in a noisy tracking of the desired trajectory (Fig. 6(b)),
while the ASTC controller shows a smoother behav-
ior (Fig. 6(a)). The big difference between the ASTC
and standard STC is due to the adaptation of the α
gain: while the gains of the STC are constant fixed to([
αx αy αz αψ

]
=
[
20 20 20 2

])
, the gains of

the ASTC are able to vary as shown in Fig. 4(c). The
interested reader is invited to see the video of the physical
simulations included as part of this work.
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Fig. 4: Results from ASTC. 4(a): External disturbance fext applied
on the quadrotor in fextx (red), fexty (green) and fextz (blue).
4(b): Sliding variable σ in σx (red), σy (green), σz (blue) and σψ
(magenta). 4(c): Adaptive α gain of ASTC in αx (red), αy (green),
αz (blue) and αψ (magenta). 4(d): Nominal feedforward proposed
in ASTC as ffx (red), ffy (green), ffz (blue) and ffψ (magenta)
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Fig. 5: Results of the thrust and torque control inputs that are given
to the quadrotor. 5(a): thrust ρ (red), roll torque τx (green), pitch
torque τy (blue) and yaw torque τz (magenta) with ASTC. 5(b):
thrust ρ (red), roll torque τx (green), pitch torque τy (blue) and
yaw torque τz (magenta) with standard STC.
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Fig. 6: Results of the position tracking error ep for aggressive
maneuvers. 6(a): ex (red), ey (green), ez (blue) using ASTC. 6(b):
ex (red), ey (green), ez (blue) using standard STC.
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V. CONCLUSIONS

In this paper we have considered the problem of trajectory
tracking with a quadrotor UAV in presence of uncertain-
ties, external wrenches and noise on the measurements. We
have implemented a robust controller based on a Super
Twisting architecture with adaptive gains. The controller is
also extended to include a feedforward dynamic inversion
of the nominal model. The main features of the proposed
method are (i) the knowledge of the upper bound of the
perturbations is not needed and (ii) chattering is limited.
Physical Simulations show that the controller is effective,
even in comparison to a recently proposed super twisting
controller. In the future, we plan to continue this work by
implementing the controller on a real quadrotor and running
extensive experiments.
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