
A Setup for Multi-UAV Hardware-in-the-Loop
Simulations

Marcin Odelga, Paolo Stegagno, Heinrich H. Bülthoff and Aamir Ahmad

Abstract— In this paper, we present a hardware-in-
the-loop simulation setup for multi-UAV systems. With
our setup we are able to command the robots simulated
in Gazebo, a popular open source ROS-enabled physical
simulator, using computational units that are embedded
on our quadrotor UAVs. Hence, we can test in simulation
not only the correct execution of algorithms, but also
the computational feasibility directly on the robot’s
hardware. In addition, since our setup is inherently
multi-robot, we can also test the communication flow
among the robots. We provide two use cases to show
the characteristics of our setup.

I. INTRODUCTION

Latest trends in research on Unmanned Aerial
Vehicles (UAVs) push for on-board integration of
highly informative sensors such as laser scanners
[1], cameras [2] and RGB-D devices [3], [4]. The
increase in available information and the need to
process it on-board requires also more compu-
tational power directly embedded on the robots.
However, due to payload and power consumption
constraints, the on-board available computational
power is not yet comparable to the one of a normal
desktop PC.

Another increasing trend is the use of physical
simulations to test algorithms for robotics before
the real hardware implementation phase. They are
particularly useful when considering UAVs, since
each experiment can be time consuming and could
even result in a crash. However, whenever porting
an algorithm from simulation to the real hardware,
temporization issues may arise due to the limited
on-board computational power. The main problem

All authors are with the Max Planck Institute for
Biological Cybernetics, Department of Human Perception
Cognition and Action, Spemannstrasse 38, 72076
Tübingen, Germany {pstegagno, modelga, hhb,
aamir.ahmad}@tuebingen.mpg.de

is that simulations usually run on a different hard-
ware than the one equipped on-board, hence not
allowing to check the real execution time of the
software.

Hardware-in-the-loop (HIL) simulation [5] is a
good way to test these aspects without a need of
real robot experiments. In [6] the authors present
a UAV system with HIL simulation for testing the
platform with real-time data and real environment.
Their system constitutes of a reliable platform for
testing critical safety properties with special atten-
tion. Thus, through HIL simulation they greatly
reduce experimental costs. Another HIL setup, for
a UAV helicopter, can be seen in [7]. The authors
show its cost-efficiency in terms of verification of
the overall control performance and safety. Their
system, capable of simulating flight tests including,
e.g., basic flight motions and full-envelope flights,
confirms the high effectiveness and usefulness of
HIL simulations.

In this paper, we present our setup for HIL sim-
ulations which consist of two main parts. The first
is Gazebo, a popular open source ROS-enabled
simulator, which provides the dynamical simula-
tion of one ore more UAVs and the corresponding
sensor readings (IMU, cameras, etc.). On the other
hand, each of the simulated UAVs is driven using
an ARM-based Odroid board, which is the high
level control board installed on our quadrotors. The
interfacing between the components is provided by
a ROS (Robot Operating System) node based on
the Telekyb software ([8]).

Using this simulation scheme, we obtain two
major benefits with respect to a normal simulation.
First, we can test algorithms directly on the on-
board computational units, hence also testing the
computational times and the feasibility in real-
time. In addition, since our setup is meant for

multi-robot systems, we can also test the commu-
nication among multiple boards.

The rest of the paper is as follows. In Sect. II
we describe our hardware platform. In Sect. III
we explain in detail the software setup to perform
hardware-in-the-loop simulations. In Sect. IV we
show two case studies in which we demonstrate
the feasibility of hardware-in-the-loop simulations
in both single and multi-UAV systems, and Sect.
V concludes the paper.

II. UAV PLATFORM

Our robotic setup is made of multiple UAVs:
MK-Quadro quadrotors from MikroKopter. Each
UAV consists of a frame with four 10 inch pro-
pellers powered by brushless motors, motor con-
trollers and a flight controller board with an 8-bit
microcontroller. The main board includes an in-
ertial measurement unit (IMU), i.e., two 3-axis,
10-bit analog sensors: an accelerometer (with
a range of ±2 g) and a gyroscope (±300 deg/s
range), both read with an analog to digital con-
verter. The board communicates with the brushless
motor controllers through a standard I2C bus and
offers two serial connections with a 115 200 Bd
baud rate.

The original firmware, which allows us to drive
the quadcopter with a remote control, has been
replaced with our own software that has new
features and a different interface that allows us
to control the robot through serial channels. The
first channel is used to send attitude and thrust
commands to the microcontroller at ~100 Hz, and
to receive low-frequency data (~20 Hz) (i.e. battery
level). The second channel, strictly unidirectional,
is used to retrieve high frequency IMU readings at
500 Hz. The platform is powered by a 2600 mAh
LiPo battery that provides approximately 10 min
of flight.

In addition, we have equipped the system with
Odroid-XU3, a double quad core1 ARM micropro-
cessor board that provides enough computational
power to make the system independent of external
computational units. High computational power to
weight/size ratio and low cost make this board

1four Cortex-A15 at 2.0 Ghz, four Cortex-A7 and Heterogeneous
Multi-Processing (HMP) solution for tasks management

Fig. 1: One of our UAVs.

relatively popular among the robotics community.
It enables the use of high computationally de-
manding algorithms, e.g., visual based odometry
and mapping ([4], [2], [9]) or advanced control
methods such as model predictive control ([10]),
directly on the platform.

Communication with the low-level flight con-
troller is carried out by two serial adapters con-
nected to XU3’s USB ports. Power to the board
and its peripherals is provided by a 5 V step-down
voltage regulator connected to the LiPo battery.
The board can exchange data with the fixed opera-
tor desk using a USB Wi-Fi adapter. The complete
platform is depicted in Fig. 1.

III. SOFTWARE SETUP

In this section, we describe first the software
setup to drive a single UAV. Then, we show oppor-
tune modifications in order to run HIL simulations.
Finally, we point out the required steps to perform
multi-robot HIL simulations.

A. UAV control

In order to control a quadrotor, we use a soft-
ware setup as depicted in Fig. 2. Being installed
with the Ubuntu 14.04 ARM distribution, the
Odroid board is ROS enabled, hence we can run
the Telekyb software and its high-level controller
and algorithms. Moreover, we can exploit ROS
communication topics to connect it to a base
station equipped with input/feedback devices. In
addition, the base station may host appropriate rou-
tines to read measurements provided by a motion
capture system (Vicon), if present, and translate
them into ROS topics.

Screen
Vicon

Joystick
Haptic interface

hardware
interface low-level

control

Telekyb
(high-level

control and
algorithms)

Odroid

serial connection

Quadrotor

thrust, attitude,
yaw rate

commands

IMU data

ROS
topics

on-board sensors

sensor interface

ROS topics

USB serial

commands

IMU data

base
station

ROS topics over
wireless IEEE 802.11

connection

feedback for
the operator

pose,
inputs from
the operator

Fig. 2: A block scheme of our UAV setup.

Similarly, Telekyb modules are interfaced
through ROS topics with a ROS node to connect
it with the hardware. The role of this block is to
encrypt and send the commands (desired thrust, at-
titude and yaw rate) to the microcontroller through
the serial connection. The low-level controller is
then in charge of driving the propellers’ motors
to follow the received commands. Similarly, the
block receives IMU and battery status data from
the microcontroller and translates them on ROS
topics.

The UAV can be equipped with additional sen-
sors such as cameras, RGB-D sensors, laser scan-
ners, and GPS modules. In general, they can be
connected through serial and USB ports which are
present on the Odroid board. The interfacing with
the high-level controller and algorithms is obtained
once again with specific ROS nodes that translates
the measurements into ROS topics.

B. Hardware-in-the-loop

In order to perform HIL simulations, we can
exploit the standardization of the input/output pro-
vided by Telekyb, whose interfacing with other
blocks is run solely through ROS topics. A block
scheme of our setup to perform hardware-in-the-
loop simulations is depicted in Fig. 3. With respect
to the scheme in Fig. 2, the hardware and sensor
interface block has been replaced with a Gazebo
interface block. Its main functionality is to provide
an interfacing layer between Gazebo and the high-
level control and algorithms.

In particular, it uses data provided by the sensors
and ground truth in Gazebo to emulate the ROS
topics provided by the Vicon tracking system (if

required), IMU, cameras and other sensors present
both in the simulation and the real robot setup. The
emulation not only comprises the specific topics
and format on which the data are provided by
Gazebo, but also take care of the temporization.
For example, our real Vicon system provides data
at 120Hz, while the physical simulation is per-
formed with a timestep of 1ms, so that ground
truth pose information about the UAV is available
at 1000Hz. Nevertheless, the pose provided to the
Telekyb blocks is temporized at 120Hz by the
Gazebo interface.

On the other hand, the Gazebo interface trans-
lates the thrust, attitude and yaw rate commands
provided by the high-level controller into com-
mands that can be read from the simulator and
applied to the simulated UAV model.

The interfacing with the base station and the
operator does not change with respect to the real
robot system. The Gazebo simulator can be hosted
either on the base station or on another machine.
In order to test also the communication link be-
tween the robot and the base station, the latter
is preferred, while the first can be implemented
if the objective of the simulation is only to test
the functionality and the execution time of the
implemented algorithms. In both cases, the com-
munication between the Odroid board and Gazebo
is achieved through ROS topics over IEEE 802.11
connection.

C. Multi-robot

Since all components of the hardware-in-the-
loop simulation, and in particular Telekyb, are in-
herently thought for multi-robot applications, only

ROS topics over
IEEE 802.11
connection

thrust, attitude,
yaw rate

commands

IMU data, pose,
on-board sensors

Odroid

ROS topics

simulated on-board
sensor measurements

base
station

Screen
Joystick

Haptic interface

ROS topics over
wireless IEEE 802.11

connection

feedback for
the operator

inputs from
the operator

Host PC
with

Gazebo

Gazebo
interface

Telekyb
(high-level

control and
algorithms)

ROS
topics

commands

IMU data
pose

Fig. 3: A block scheme of the hardware-in-the-loop simulation setup.

Odroid 1

base station
human

interfaces

Host PC with Gazebo

Gazebo
interface_1

Telekyb_1

Odroid 2
Gazebo

interface_2

Telekyb_2 Odroid n
Gazebo

interface_n

Telekyb_n

. . .

inter-robot
communication

network

Fig. 4: A block scheme of the multi-robot
hardware-in-the-loop simulation setup.

few adjustments are required to perform multi-
robot HIL simulations.

The most important thing is that each robot
simulated in Gazebo is endowed with a unique
identifier ID, which must be inserted in the name
of all ROS nodes and topics relative to such robot.
Hence, for each robot in Gazebo, one Odroid board
is setup to host a Gazebo interface that reads the
appropriate topics (i.e.: the topics containing the
own ID) and a Telekyb instance connected to such
ID. Each Odroid is also connected to the base
station in the same way as the previous case. The
resulting scheme is presented in Fig. 4.

In addition to the single robot case, it is also
possible to test the inter-robot communication net-
work. At the current stage of development, the
communication between robots is yet again per-
formed exploiting ROS topics on a wireless IEEE
802.11 channel. Nevertheless, it is also possible to

include and test custom communication networks
among the robots equipping Odroid boards with
appropriate hardware (e.g.: bluetooth antennas).

IV. CASE STUDY

As examples of the functionalities of our
hardware-in-the-loop setup, we present in this
section two case studies. In the first case study,
we will show a single robot obstacle avoidance
simulation and the corresponding experiment with
a real robot. The aim is to show the same behavior
in these two systems, which proves the possibility
to test complex algorithms in simulation.

In the second case study, we highlight the multi-
robot capabilities of our hardware-in-the-loop sim-
ulation scheme by performing formation control
with three simulated UAVs driven by three Odroid
boards.

A. Obstacle Avoidance

In this case study, we show an obstacle avoid-
ance experiment performed both in simulation and
on a real robot. The algorithm is divided into two
main modules. The first module maps the obstacles
in the proximity of the robot detected using depth
images from an on-board RGB-D sensor. The sec-
ond module, the avoidance part, works on a shared
control principle as the user input, the velocity
commanded by the operator, is altered to prevent
collisions. The algorithm can override commands
by adding a lateral and/or vertical component. The
resulting reference velocity is then provided to the
velocity controller of the robot2. To facilitate the

2Further details of this method are not in the scope of this paper.
A manuscript explaining this algorithm in detail is in the review
process during the preparation of this paper.

Fig. 5: Three comparative snapshots of the same obstacle avoidance algorithm performed in hardware-
in-the-loop simulation (top) and a real UAV experiment (bottom).

-1
-0.5

y
W

00

0.5

1

1.5

2

x
W

2.5

3

1

0.5

0

3.5

z
W

UAV trajectory

commanded velocity

avoidance velocity

obstacle

-1
-0.5

y
W

00

0.5

1

1.5

2

x
W

2.5

3

0

0.5

1

3.5

z
W

UAV trajectory

commanded velocity

avoidance velocity

obstacle

Fig. 6: The comparison of trajectories performed by the UAV in a real experiment (left) and in hardware-
in-the-loop simulations (right).

teleoperation task the operator is provided with a
visual and haptic feedback.

The on-board RGB-D sensor (Asus Xtion Pro),
used as the source of data for obstacle detection,
is mounted approximately 45° to the right with
respect to the front propeller and rotated 90°
around the camera axis to extend the vertical field
of view (FOV). It is also rotated downward at
about 20° to increase the number of visual features
inside the FOV by framing a bigger portion of the
ground, while simultaneously offering a horizontal
line of sight to the operator. The Odroid board
and the camera are attached rigidly to the frame
with 3D printed parts. The UAV used in the real
experiment and equipped with the RGB-D sensor
weights approximately 1.3 kg.

In order to conduct the experiment with sim-
ulated UAV and sensor readings the same setup
is recreated in Gazebo using a dynamic model of
multirotor3. Color and depth images are generated
thanks to an RGB-D sensor plug-in. The intrinsic
and extrinsic parameters, i.e. camera parameters
and sensor pose, respectively, are set to match the
real hardware.

We have conducted experiments of lateral avoid-
ance of a vertical obstacle, both in simulation and
using the real robot. The human operator was
commanding the robot to go towards the edge
of the obstacle. In Fig. 5 snapshots from the
experiments are presented and show consecutive
positions of the robot during the flight. Full trajec-
tories, together with the commanded and reference
velocities, are presented in Fig. 6. Both Figures
show that the real and the simulated robot have
the same behavior in the experiment.

In Table I we show mean values (µ) and standard
deviations (σ) of the execution time of two mod-
ules of the algorithm. These modules are related
to the data processing of depth images and robot’s
state estimate, respectively. We have run the same
experiment on three different platforms: standard
desktop PC, hardware-in-the-loop simulation, and
the real platform. Table I shows that the computa-
tional times obtained in the PC simulation is very
different with respect to the timing obtained in the

3https://github.com/ethz-asl/rotors_
simulator

Module 1 Module 2
µ [ms] σ [ms] µ [ms] σ [ms]

PC <1 - <1 -
HIL 1.74 0.302 5.3 1.42

Robot 1.95 0.339 5.65 0.78

TABLE I: Execution Time Comparison

Fig. 7: A snapshot of formation control performed
in hardware-in-the-loop-simulation.

other two experiments. On the contrary, the com-
putational times in the HIL simulation and in the
experiment with a real robot are comparable. Small
differences in the execution times in HIL and real
experiments are due to the real sensor acquisition
time, which is anyhow negligible compared to the
rest of the algorithm’s execution time. It is clear
from the table that the timing obtained on the PC
does not provide any meaningful insight into the
evaluation of the real-time feasibility on the real
hardware. However, using HIL simulation we were
able to evaluate the real-time execution time which
was comparable to the real experiment’s execution
time.

B. Multirobot

In order to test the multi-robot capabilities
of our HIL setup, we have performed a multi-
robot teleoperation simulation with three simulated
UAVs driven by three separate Odroid-XU3 boards
following the scheme of Fig. 4. The navigation
algorithm for the robots is the one proposed in
[11].

The test algorithm was specifically chosen be-
cause it requires some exchange of information

https://github.com/ethz-asl/rotors_simulator
https://github.com/ethz-asl/rotors_simulator

among the robots in order to achieve consensus on
the status of the system. This inter-robot commu-
nication was performed using the wireless IEEE
802.11 capabilities of the Odroid-XU3 boards.
In Fig. 7 we show one snapshot of this simu-
lation. The interested reader is invited to watch
the video clip of this and the previous simulation
and experiments in the accompanying multimedia
attachment.

V. CONCLUSION
In this paper, we have presented a UAV

hardware-in-the-loop simulation scheme which al-
lows us to test the computational requirements
of our algorithms directly on the computational
unit that is equipped on the robots, while si-
multaneously enjoying the safety of a simulation.
Additionally, we can perform multi-robot HIL
simulations to test the communication among the
robots.

The use of HIL simulations was very useful
during the development of an obstacle avoidance
algorithm, especially in terms of time needed to
perform experiments. In fact, it was possible to
test various parameters without the need to run
real experiments. The use of the actual hardware
(Odroid-XU3) in the simulations allowed to check
if the execution times of the various modules were
compatible with the on-line execution.

As future development, we plan to extend the
system to include other types of robots (e.g.:
wheeled robots) and test other types of commu-
nication networks (e.g.: bluetooth).

REFERENCES

[1] S. Omari, M.-D. Hua, G. Ducard, and T. Hamel, “Bilateral
Haptic Teleoperation of an Industrial Multirotor UAV,” in
Gearing up and accelerating cross-fertilization between aca-
demic and industrial robotics research in Europe, Springer
International Publishing, 2014, pp. 301-320.

[2] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast Semi-
Direct Monocular Visual Odometry,” in IEEE International
Conference on Robotics and Automation (ICRA), 2014.

[3] P. Stegagno, M. Basile, H. H. Büthoff, and A. Franchi, “A
Semi-autonomous UAV Platform for Indoor Remote Opera-
tion with Visual and Haptic Feedback,” in IEEE International
Conference on Robotics and Automation (ICRA), 2014, pp.
3862-3869.

[4] Z. Fang and S. Scherer, “Real-time Onboard 6DoF Local-
ization of an Indoor MAV in Degraded Visual Environments
Using a RGB-D Camera,” in IEEE International Conference
on Robotics and Automation (ICRA), May 2015.

[5] J. Burbank, W. Kasch, and J. Ward, “Hardware-in-the-Loop
Simulations," in An Introduction to Network Modeling and
Simulation for the Practicing Engineer, 1, Wiley-IEEE Press,
2011, pp.114-142.

[6] V.K. Chandhrasekaran and Choi Eunmi, “Fault tolerance
system for UAV using hardware in the Loop Simulation,” in
International Conference on New Trends in Information Sci-
ence and Service Science (NISS), 11-13 May 2010, pp.293-
300.

[7] G. Cai, B. M. Chen, T. H. Lee, and M. Dong, “Design and
implementation of a hardware-in-the-loop simulation system
for small-scale UAV helicopters,” in IEEE International Con-
ference on Automation and Logistics (ICAL), 1-3 Sept. 2008,
pp.29-34.

[8] V. Grabe, M. Riedel, H. H. Bülthoff, P. R. Giordano, and
A. Franchi, “The TeleKyb framework for a modular and
extendible ROS-based quadrotor control,” in European Con-
ference on Mobile Robots (ECMR), 25-27 Sept. 2013., pp.19-
25.

[9] G. Mohanarajah, V. Usenko, M. Singh, M. Waibel, and R.
D’Andrea, “Cloud-based collaborative 3D mapping in real-
time with low-cost robots,” in IEEE Transactions on Automa-
tion Science and Engineering, March 2014.

[10] Y. Liu, J. M. Montenbruck, P. Stegagno, F. Allgöwer, A.
Zell, “A Robust Nonlinear Controller for Nontrivial Quadrotor
Maneuvers: Approach and Verification”, in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS),
28th Sep-3rd Oct 2015.

[11] A. Franchi, C. Secchi, H. I. Son, H. H. Bülthoff and P.
Robuffo Giordano, “Bilateral Teleoperation of Groups of
Mobile Robots with Time-Varying Topology” in IEEE Trans-
action on Robotics, 28(5) pp. 1019-1033, Oct 2012.

	INTRODUCTION
	UAV PLATFORM
	SOFTWARE SETUP
	UAV control
	Hardware-in-the-loop
	Multi-robot

	CASE STUDY
	Obstacle Avoidance
	Multirobot

	CONCLUSION
	References

