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Cooperative Transportation of a Payload using Quadrotors:
a Reconfigurable Cable-Driven Parallel Robot

Carlo Masone, Heinrich H. Bülthoff and Paolo Stegagno

Abstract— This paper addresses the problem of cooperative
aerial transportation of an object using a team of quadrotors.
The approach presented to solve this problem accounts for the
full dynamics of the system and it is inspired by the literature on
reconfigurable cable-driven parallel robots (RCDPR). Using the
modelling convention of RCDPR it is derived a direct relation
between the motion of the quadrotors and the motion of the
payload. This relation makes explicit the available internal
motion of the system, which can be used to automatically
achieve additional tasks. The proposed method does not require
to specify a priory the forces in the cables and uses a tension
distribution algorithm to optimally distribute them among the
robots. The presented framework is also suitable for online
teleoperation. Physical simulations and real experiments with
a human-in-the-loop validate the proposed approach.

I. INTRODUCTION

In this paper we consider the task of cooperative aerial
transportation and manipulation of an object using a team
of quadrotors. In particular, we study the case of a payload
suspended via cables (see Fig. 1) because: 1) the use of
cables removes the need to carry manipulators or grippers
onboard the quadrotors, thus allowing to transport heavier
objects, and 2) cables can have a long extension, thus giving
more freedom to distribute the quadrotors.

The problem of cooperative manipulation of a payload
suspended via cables by quadrotors or other unmanned aerial
vehicles (UAVs) has already been addressed in several recent
publications, [1], [2], [3], [4], [5], however these papers are
based on a quasi-static model of the system and neglect
the dynamics of the payload. In [6] the authors study the
problem of cooperative maniptulation of a load suspended
by quadrotors via cables, and the solution proposed is based
on the full dynamics of the system. he authors prove that the
system is differentially flat and give an expression of the flat
output, using it to plan feasible trajectories. However, that
approach has a few drawbacks: 1) it requires to specify the
trajectory of the load up to the sixth derivative in position and
up to the fourth derivative in orientation, which does not lend
itself to including a human piloting the payload online; 2) to
resolve the internal forces of the system it is necessary to
specify some components of the cable forces up to the fourth
derivative, but this is not intuitive and it is unclear the effect
of this choice on the trajectories of the quadrotors; 3) the flat
output does not give a direct and explicit understanding of
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Fig. 1: Sketch of the system.

the trajectories of the quadrotors, which can only be obtained
by integrating the input.

In this paper we present a different approach to solve this
problem while taking into account the full dynamics of the
system. Our solution is inspired by recent works on recon-
figurable cable-driven parallel robots (RCDPRs) on [7], [8],
[9], [10]. We recall that RCDPRs are a special category of
cable driven parallel robots in which the actuators pulling the
cables (in our case quadrotors, more in general winches) pos-
sess some degrees of freedom to move in space. Following
the modelling convention of RCDPRs we are able to find a
direct relation between motion of the payload and motion of
the quadrotors. Such relation can be used to specify internal
motions of the robots in order to automatically achieve some
desirable task, as for example a smooth distribution of the
load among the robots. Furthermore the proposed approach
does not require to specify a priori non intuitive references
for some of the internal forces, but rather optimizes them
online by using a tension distribution algorithm. Lastly, we
believe that our approach is more suitable than the method
described in [6] for a teleoperation framework with a human
piloting the payload.

In addition to the aforementioned contribution to the field
of cooperative aerial transportation, this paper constitutes
also a contribution to the RCDPRs field. In fact, all recent
works [7], [8], [9], [10] have considered only the static
kinematics of RCDPRs, using it to find the optimal actuators
configuration according to various metrics. Yet none of
these papers fully considers the effect of the motion of the
actuators on the payload. In this paper we describe, to the
best of our knowledge for the first time, the differential
kinematics of a generic RCDPR and we show explicitly the
relation between the motion of the actuators and the motion
of the payload. We also describe the nature of the internal
motions by means of a spatial decomposition of the motion
of the actuators. Finally, we show how the motion of the
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actuators of a RCDPR can be used online to control the
motion of the payload.

The rest of the paper, is organized as follows. In Sec. II
we introduce the system and few modelling assumptions.
Then in Sec. III we derive a differential kinematics model
of the system, highlighting the nature of the internal motions
and the connection to CDPRs. The dynamics of the payload
and quadrotors are described in Sec. IV and a trajectory
controller is designed in Sec. V. Finally, in Sec. VI we
present experimental results to validate our findings.

II. PRELIMINARIES

In this paper we consider the system depicted in Fig. 1, that
is composed of:

1) a rigid body (payload), tasked to follow a trajectory in
a n-dimensional task space, with n ≤ 61;

2) m ≥ n quadrotors that are connected to the payload via
cables (one cable per UAV)2.

The i-th cable is attached at one end to a point Bi on
the payload (onboard connection) and at the other end it is
attached to point as Ai on the quadrotor (moving anchor). To
model this system we will make the following assumptions:
A1) The anchor Ai is coincident with the center of mass of

the i-th quadrotor.
A2) The cables are massless, inextensible and they are

always taut (constant cable length).
Assumption A1) is reasonable, see also [6], because the
mass of the cables is presumably significantly smaller than
the mass of the payload and the elasticity of the cables is
negligible. Instead A2) is verified if we guarantee that the
cable tensions are kept in a suitable (positive) range, which
will be discussed in Sec. V

With this setting we will tackle the problem of steering
the payload along the desired trajectory in three steps:

Kinematics: We study the differential kinematics of
the system and derive a mapping between motion of the
payload and motion of the anchors. This mapping is used to
translate the desired trajectory of the payload into a reference
trajectory for the quadrotors.

Dynamics: We describe the dynamics of the system,
showing explicitly the interaction between payload and UAVs
through the cable forces. This model is used to determine the
required cable tensions for the desired payload dynamics.

Control: We design a trajectory tracking controller
that, using the kinematic and dynamic models previously
introduced, computes the inputs for the quadrotors.

III. KINEMATICS

The pose of the payload is described by the vector
xν = [WpT νT ]T ∈ SE(3) that represents position
Wp ∈ R3 and orientation ν ∈ SO(3) of a frame FL =

1The configuration space of the rigid body is SE(3), but the task might
not fully specify position and orientation of the load.

2Even though from a static analysis [2] three quadrotors are enough to
suspend the payload in any configuration, to be able to apply any wrench
to the load we need at least m = n robots.
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Fig. 2: System kinematics.

{
OL, ~XL, ~YL, ~ZL

}
fixed on the load w.r.t. an inertial world

frame FW =
{
OW , ~XW , ~YW , ~ZW

}
(see Fig. 2). Hereinafter

we describe the orientation using the roll-pitch-yaw angles
ν = (φ θ ψ)T and the rotation matrix from FL to FW , i.e.,
WRL. Velocity and acceleration of the payload are denoted
as ẋ = [W ṗT ωT ]T and ẍ = [W p̈T ω̇T ]T , where ω and
ω̇ are the angular velocity and acceleration of the rigid
body in FW

3. The position of the end-point of the i-th
cable, i.e. the moving anchor Ai, is described in FW by
the vector Wai ∈ R3 (see Fig. 2). The position vectors of
all the anchors can be stacked together in the more compact
representation χ =

[
WaT

1 · · · WaT
m

]T ∈ R3m.
Our goal is to find a kinematic model that relates xν , ẋ

and ẍ to χ, χ̇ and χ̈.

Remark 1. In the kinematics we refer only to the anchors
Ai where the cables are connected, not to the quadrotors.
The quadrotors providing the actuation of the anchors are
only considered in the dynamics.

Remark 2. In this paper we only consider the motion of the
payload and of the anchors up to their acceleration (ẍ and
χ̈) because this is enough for the purpose of our controller.
Nevertheless, the discussion presented in this section extends
seamlessly to higher order derivatives.

Under assumption A2) in Sec. II the generic i-th cable
satisfies a loop closure constraint that is given by a triangle
with vertices i) the moving anchor Ai, ii) the onboard
connection Bi, and iii) the point OL (see Fig. 2), i.e.

W li = ρi
Wni =

Wai −Wp−WRL
Lbi︸ ︷︷ ︸

W bi

(1)

where

• Lbi ∈ R3 is the position of Bi in FL and W bi =
WRL

Lbi is the vector of
−−−→
OLBi in FW ;

• W li ∈ R3 is the vector from Bi to Ai expressed in
FW and it is factorized into the unit vector Wni ∈ R3

(cable direction in FW ) and the scalar ρi > 0 (cable
length).

3Note that ẋν 6= ẋ since ω 6= ν̇.



Equation (1) can be written for all the cables in the
following compact form

Nρ = χ− ξ , (2)

where
• ρ =

[
ρ1 · · · ρm

]T ∈ Rm is the vector of cable
lengths;

• ξ = 1m×1⊗Wp+
[
W bT1 · · · W bTm

]T
is the vector of

stacked positions of the connection points Bi in FW
4;

• N ∈ R3m×m is the block diagonal matrix of cable
directions, i.e.,

N =


Wn1 03×1 · · · 03×1
03×1

Wn2 · · · 03×1

03×1 03×1
. . . 03×1

03×1 03×1 . . . Wnm

 (3)

By differentiating (2) twice we have

Ṅρ = χ̇− ξ̇ (4)

N̈ρ = χ̈− ξ̈ (5)

where we have imposed that ρ̇ = ρ̈ = 0m×1 (assumption of
taut cables).

Equations (2), (4) and (5) provide the sought relation
between motion of the anchors (χ, χ̇ and χ̈) and motion of
the payload (implicitly expressed by ξ, ξ̇ and ξ̈). However,
from (4) and (5) it is not immediately clear how the motion
of the anchors relates to the motion of the payload. To better
understand this mechanism, we will make the dependency
from ẋ and ẍ explicit in (4) and (5) and we will decompose
the trajectories into two vector spaces, that are:
• R(N), the m-dimensional range space of N .
• K(N), the 2m-dimensional null space of N .
First, we need to introduce a property that is instrumental

to achieve the aforementioned decomposition.

Lemma 1. The trajectories of the cable suspended payload
with moving anchors and fixed length cables, with kinemat-
ics (2), (4) and (5), satisfy

NT Ṅρ = 0m×1 (6)

NT N̈ρ = Ṅ
T
(
ξ̇ − χ̇

)
(7)

Proof. From the structure of N in (3), we have that

NT Ṅ =


WnT

1
W ṅ1 0 · · · 0
0 WnT

2
W ṅ2 · · · 0

0 0
. . . 0

0 0 . . . WnT
m

W ṅm


Since the time derivative of the generic unit vector Wni is
W ṅi = ωni

× Wni, with ωni
being the angular velocity

of the i-th cable, then it follows that WnT
i

W ṅi = 0 and
consequently NT Ṅ = 0m×m, which proves (6).

4⊗ is the Kronecker product operator and 1m×1 is the m × 1 matrix
with all entries equal to 1.

To prove (7), isolate ρ on the l.h.s. of (2) by multiplying
both sides for NT . The expression thus obtained can be
differentiated twice w.r.t. time, yielding

ρ̈ = N̈T (χ− ξ) + 2ṄT
(
χ̇− ξ̇

)
+NT

(
χ̈− ξ̈

)
= N̈TNρ+ 2ṄT

(
χ̇− ξ̇

)
+NT N̈ρ = 0m×1

The block diagonal structure of N (see (3)) and N̈ implies
that N̈TN = NT N̈ , and using this property on the previous
equation concludes the proof.

Finally, we can present the following result for the spatial
decomposition of the trajectories of the anchors.

Propositon 1. For the cable suspended payload with fully
movable anchors and fixed cable length, the kinematic map-
ping from payload velocity ẋ and acceleration ẍ to anchors
linear velocities χ̇ and accelerations χ̈ is:

χ̇R = NJRẋ (8)

χ̈R = NJRẍ+NṄT
(
ξ̇ − χ̇

)
(9)

χ̇K = Ṅρ+ JKẋ (10)

χ̈K = N̈ρ+ JKẍ−NṄT
(
ξ̇ − χ̇

)
(11)

where •R indicates a vector on R(N), •K indicates a vector
on K(N), χ̇ = χ̇R + χ̇K, χ̈ = χ̈R + χ̈K,

JR = NT

I3×3 −[W b1]×
...

...
I3×3 −[W bm]×

 (12)

JK = (I3m×3m −NNT )

I3×3 −[W b1]×
...

...
I3×3 −[W bm]×

 (13)

and [•]× indicates the skew-symmetric matrix operator such
[v1]× v2 = v1 × v2 for v1,v2 ∈ R3.

Proof. Projection on R(N) The projection onto R(N) is
obtained by premultiplying both sides of (4) and (5) for
the orthogonal projection operator NNT . Consider first (4).
Using the notation χ̇R = NNT χ̇ and property (6), it
follows that

χ̇R = NNT ξ̇.

Since by definition

ξ̇ =

I3×3 −[W b1]×
...

...
I3×3 −[W b1]×

 ẋ
we verify (8) and (12). Consider now (5). Using the same
procedure, with χ̈R = NNT χ̈ and property (7), we obtain

χ̈R = NNT ξ̈ +NṄT
(
ξ̇ − χ̇

)
As already observed before, it is easy to verify that NT ξ̈ =
NTJRẍ, thus proving (9)



Projection on K(N) The projection onto K(N) is ob-
tained with the orthogonal null-space projection operator
(I3m×3m − NNT ). Repeating the same procedure of the
previous case, premultiplying (4) for the projection matrix
and using the notation χ̇K = (I3m×3m − NNT )χ̇ and
property (6) yields

χ̇K = Ṅρ+ (I3m×3m −NNT )ξ̇ .

Once again, from the structure of ξ̇ it is trivial to see that
(I3m×3m −NNT )ξ̇ = JKẋ, proving (11) and (13). Lastly
applying the projection on (5) and using (7) gives

χ̈K = N̈ρ+
(
I3m×3m −NNT

)
ξ̈ −NṄT

(
ξ̇ − χ̇

)
which, for the previous considerations, verifies (11).

Remark 3. The term NṄT
(
ξ̇ − χ̇

)
in (9) and (11) is

the apparent acceleration due to the rotation of the cables
represented by Ṅ .

Remark 4 (Internal Motions). In comparison to (4) and (5)
Prop. 1 gives a better idea of the relation between motion
of the anchors and motion of the payload. Proposition 1
states that, given the current state of the kinematic system,
the motion of the payload uniquely defines the motion of
the anchors on R(N), but not on K(N). The motion of the
anchors on K(N) requires to additionally specify a derivative
of N (Ṅ for χ̇K and N̈ for χ̈K). The interpretation of
this fact is that only the motion of the anchors on R(N),
i.e. along the the cables, instantaneously affects the motion
of the payload whereas the 2m degrees of freedom of the
anchors on K(N) can be used to assign internal motions
that change the configuration of cables without moving the
payload. These internal motions can be used, for example,
to maximize the stiffness of the system or to group more
densely the formation of robots when passing through narrow
gaps. The development of such behaviours is outside the
scope of this paper and it will be tackled in future studies.
Nevertheless, in the experiments presented in Sec. VI we will
show few basic examples of how to use the internal motions.

Remark 5 (Forward Kinematics). The forward kinemat-
ics (2) cannot be uniquely solved with the payload pose, but
it requires also the cable direction N . Therefore, (2) can be
solved either with an optimization algorithm that implicitly
chooses N according to some metric or by assigning N . In
the experiments presented in Sec. VI we solve the forward
kinematics by assigning the initial value N and then integrat-
ing it with the signals Ṅ and N̈ that are chosen to achieve
a desired internal motion.

Remark 6 (Comparison with CDPRs). The model presented
here describes the differential kinematics of a RCDPR with
freely moving anchors and the constraint of fixed cable
lengths. Recently, few papers have addressed the topic of
RCDPRs, [7], [8], [9], [10], yet without providing an analysis
of the relation between motion of the anchors and motion
of the payload. The common approach is to compute the
position of the anchors by numerically solving the forward

kinematics to maximize some metric, but this strategy is
used only for reconfiguring the cables whereas the motion of
the payload is achieved by changing the cable length. Here
we directly use the motion of the anchors to i) move the
payload, and ii) achieve the desired cables reconfiguration
(internal motion). It is also interesting to compare this system
to a classic cable driven parallel robot (CDPR). In a CDPR
with fixed anchors, each cable is associated with only one
degree of freedom, the cable length. The relation between
motion of the payload and variations in the cable length is
given by (see [11])

ρ̇ = Jẋ . (14)

Clearly, for this system the degree of freedom (cable length)
can only cause an instantaneous motion directed along the
direction of the corresponding cable. Indeed, the kinematic
relation (14) resembles (8) and in fact it is J ≡ JR.

IV. DYNAMICS

We introduce now the dynamics of both the payload and
the quadrotors.

1) Payload: The dynamics of the cable suspended pay-
load depend on few physical parameters, i.e., its total mass
mL, the position W cL = [cx cy cz]

T ∈ R3 of the center of
mass in FW

5, and the 3 × 3 inertia matrix LJL w.r.t. FL.
Using the well known Newton-Euler or Euler-Lagrangian
approaches, the payload dynamics is [11]

BL(xν)ẍ+ CL(xν , ẋ)ẋ− gL(xν) = JT
Rt , (15)

where t = [t1, . . . , tm] ∈ Rm is the vector of tensions of
the cables, JT

Rt is the wrench exerted on the payload by the
cables, and BL, CL and gL are defined as

BL(xν) =

[
mLI3 mL [W cL]×

T

mL [W cL]× HL

]
, (16)

CL(xν , ẋ)ẋ =

[
mL [WωL]× [WωL]×

W cL
[WωL]×HL

WωL

]
, (17)

gL(xν) =
[
0 0 −mLg −mLcyg mLcxg 0

]T
,
(18)

HL = WRL
LJL

LRW +mL [W cL]× [W cL]
T
× . (19)

2) UAV: To model the 6 DoF (underactuated) dynamics
of the i-th UAV connected to the cable we consider a north-
west-up body frame FQi

that is attached to the center of
mass Ai of the robot. The dynamics of the i-th UAV depend
on its mass mi and on the diagonal inertia matrix Ji w.r.t.
the body frame, and have the well known form [12]

mi
W äi = mige3 + τi

WRQie3 −Wniti (20)
Jiω̇i = −ωi × Jiωi + ζi (21)

where
• wi is the angular velocity of the UAV in body frame;
• WRQi

is the rotation matrix of the body frame w.r.t.
FW and e3 = [0 0 1]T ;

5The position of the center of mass of the payload is typically expressed
in FL where it is constant, i.e., LcL. Moving to FW is straightforward,
i.e. W cL = WRL

LcL



• −tiWni is the reaction force applied by the cable on
the UAV’s center mass;

• Ji is the inertia matrix of the UAV w.r.t. FQi ;
• τi ∈ R is the thrust control input in body frame and
ζi ∈ R3 is the attitude torque control input.

Remark 7. We can divide the linear dynamics of the i-
th UAV into two components, parallel and orthogonal to
the cable direction Wni. With the same approach used in
Sec. III, applying the projector operators πR = Wni

WnT
i

and πK = (I3×3 −Wni
WnT

i ) on (20) gives

miπR
W äi = migπRe3 + τiπR

WRQi
e3 −Wniti

miπK
W äi = migπKe3 + τiπK

WRQie3
(22)

Equation (22) shows that the cable tension enters the lin-
ear dynamics of the UAV only along the cable direction.
Namely, only the motion of the quadrotor along the cable
applies a force on the payload, in accordance with spatial
decomposition in Sec. III.

V. CONTROL
Assume now to have a desired payload trajectory xν,d,
ẋd and ẍd, given by a planner or a human pilot, and the
corresponding trajectory χd, χ̇d and χ̈d for the anchors
assigned from the kinematics (Sec. III). We must compute
the inputs of the quadrotor such that the trajectories (of the
payload and of the UAVs) are followed accurately and the
tensions in the cables are feasible. To tackle this problem, we
adopt a dual-space control approach with tension distribution
akin to the controller presented in [13], [11] for a classic
CDPR. This controller is composed by three elements: i) a
control loop in task space that computes the wrench to be
applied on the payload, ii) a tension distribution algorithm
that optimally computes the cables tensions that achieve the
desired wrench on the payload, and iii) a control loop in joint
(UAVs) space that computes the inputs for the quadrotors
subject to the required forces from the cables. These three
steps are detailed in the following.

a) Task space: The loop in task space is implemented
by using the following closed-loop inverse dynamics control,

fd = BLz̈ + CLẋ− gL
z̈ = ẍd +K1 (ẋd − ẋ) +K2 (xν,d − xν)

(23)

where K1,K2 are suitable diagonal matrices of positive
gains. The vector fd ∈ R6 is the desired wrench applied
to the payload, i.e.,

fd = JT
Rt. (24)

b) Tension distribution: The required vector of tensions
is computed by inverting (24). We recall (see [13]) that
the tensions must be positive6 and have a maximum value
that depends on the cables themselves and on the actuation.
Formally,

0 ≤ t ≤ t ≤ t (25)

where t is chosen high enough to prevent cable slackness,
as in the hypothesis A2) in Sec. II. Here we simply assume

6Cables cannot push, but only pull.

that (24) is invertible and (25) is feasible. In practice this
assumption can be guaranteed by restricting the payload
and cables configurations to the so-called Wrench-Feasible-
Workspace (WFW) [14], i.e. the set of configurations in
which, for any wrench in a desired set there is a tensions vec-
tor that solves (24) and satisfies (25). Furthermore, provided
that the required set of wrenches contains a neighborhood of
the origin, JR has full rank [15]. Note that for this system,
the configurations considered to build the WFW include the
pose of the payload and the cable directions N , as both
are required to compute JR (see (12)). If the number of
cables is redundant w.r.t. the task, i.e., m > n, the solution
to relation (24) is not unique but is found in a n − m
dimensional space, i.e.,

td =
(
JT
R
)†
fd +Qλ, (26)

where the superscript •† indicates the Moore-Penrose pseu-
doinverse, Q ∈ Rm×n−m is a matrix whose columns span
the null-space of JT

R and λ ∈ Rn−m is an arbitrary vector.
The idea of tension distribution algorithms is to choose λ so
as to optimize some criterium, i.e., to minimize the functional
1/2(t − tm)T (t − tm) with tm = (t + t)/2. The tension
distribution problem can be solved by using one of the many
methods known in literature, e.g., [16], [13].

c) Joint space: Given the trajectory χd, χ̇d and χ̈d and
the cable tension td (26), we implement the tracking con-
troller for quadrotors that is detailed in [12]. This controller
has an inner/outer loop structure. The slower outer loop
position controller computes the thrust input and determines
the desired roll and pitch commands as

τi =
1

cos(φi) cos(θi)

(
mi [ÿi]3 −mig −

[
Wnitd,i

]
3

)
[
sin(θi,d)
sin(φi,d)

]
=
mT

τi

(
[ÿi]1:2 −

[
Wnitd,i

]
1:2

)
ÿ = W äi,d + k1

(
W ȧi,d −W ȧi

)
+ k2

(
Wai,d −Wai

)
(27)

where Wai and Wai,d are the subvectors of χ and χd

corresponding to the UAV (similar definitions for W ȧi, W äi,
etc.), [ÿ]1:2 is the subvector of ÿ formed by its first two
components (analogous meaning for [ÿ]3), k1 and k2 are
positive gains, νi = [φi, θi ψi] are the roll-pitch-yaw angles
describing the orientation of the quadrotor in FW and

T =

[
cos(ψi)/ cos(φi) sin(ψi)/ cos(φi)

sin(ψi) cos(ψi)

]
The faster inner loop attitude controller computes the

torque input as

ζi = Ji

(
− kdωi + kpE

−1(νi,d − νi)
)

(28)

where νi,d are the desired roll-pitch-yaw angles, kd, kp are
positive gains and E(ν) is the well known matrix that gives
the mapping ν̇ = E(ν)ωi. The stability of the controller is
proven in [12] for quasi-hovering configurations.



(a) Screenshot at t = 0 s. (b) Screenshot at t = 3 s. (c) Screenshot at t = 5 s.
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(d) Desired payload position.
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(e) Desired payload orientation
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(f) Cable tensions after tension distribution.
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(g) Payload position error.
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(h) Payload attitude error.
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Fig. 3: Simulation 1

VI. EXPERIMENTS

We tested the proposed framework both in simulation and
with real quadrotors. In these tests we implemented N and
Ṅ according to two strategies as plausible examples of the
functionalities achievable with the internal motions. These
two strategies are the following:

Constant cable direction in FL: In this case the internal
motion of the moving anchors is chosen such that the
direction of the cables is fixed in the payload frame. This
is a simple way to prevent collisions among the cables and
to preserve the range of feasible wrenches, expressed in FL,
that can be exerted on the payload7. In order to achieve this
behaviour we impose that the cables rotate rigidly with the
payload, i.e. for the generic i-th cable

˙Wni = ω ×Wni

¨Wni = ω̇ ×Wni + ω ×W ṅi

(29)

Formation shrinking/blooming: In this case the internal
motion is designed to shrink (bloom) the formation by
rotating the cables towards (away) from the vector e3 =

7The wrench exerted on the payload and expressed in FL depends on a
matrix LJT

R that has the same structure presented in (12) but with all the
vectors expressed in FL

[0 0 1]T in FW . This behaviour is implemented by choosing,
for the i-th cable,

W ṅi = ωni
×Wni

W n̈i = ω̇ni
×Wni + ωni

×W ṅi

ωni = α(Wni × e3)
(30)

where α can be chosen manually or it can be the result of a
closed loop strategy.

A. Simulation

We first tested our approach in a physical simulation that
has been developed using Simulink and SimMechanics. In
the simulations we use m = 8 quadrotors to manipulate a
cable suspended payload in the full n = 6 dimensional task
space, thus resulting in two redundant cables that can be
used to better distribute the tensions. To create the physical
model of the system we implemented the assumption A2)
from Sec. II by describing the cables as massless rigid links.
We also impose t = 0.1 N and t = 10 N as limits for the
cables tensions.

In the first simulation we command a predefined trajec-
tory to the payload while the differential dynamics of the
quadrotors are resolved by imposing (29). The screenshots
3a to 3c help visualizing how the payload moves in all the



6 degrees of freedom and how the quadrotors rearrange to
keep the direction of the cables fixed w.r.t. the payload.

To look more in detail at the reference trajectory for the
payload, we plot the position pd and the orientation νd

in Figs. 3d and 3e, respectively. The tracking error of the
payload when following these motion profiles is shown in
Figs. 3g and 3h. We see that the tracking errors are kept
very small during the whole task, validating the proposed
approach. Finally we can compare the tensions td that are
computed with the tension distribution (26) and without (by
setting λ = 02×1 in (26)). The tensions in these two cases
are drawn in Figs. 3f and 3i, respectively. We can see that
without tension distribution the forces required to the cables
would become negative, and therefore unfeasible. On the
other hand, the tension distribution not only distributes better
the forces in the cables, but it also ensures that tensions never
go below the minimum t = 0.1N. Observe also see that at
most two cables (exactly the number of redundant cables)
have the minimum tension t at the same time.

In the second simulation the payload is commanded to
stay in a fixed pose, while the internal motions are exploited
to reconfigure the quadrotors. We impose the internal motion
specified by (30) to shrink/expand the team of quadrotors.
This behaviour is visible From the three dimensional trajec-
tory of the quadrotors (see Fig. 4c) and from the screenshots
4a and 4b, where it is clear that the formation shrinks
without moving the payload and that each robot moves on
an arc centered on the corresponding connection point of
the payload. The tracking error of the first quadrotor in
following such a trajectory is presented in Fig. 4d. Finally,
Fig. 4e shows the evolution of the tension vector td during
the task. It stands out that reconfigurations of the team, even
though they do not cause motions of the payload, affect the
distribution of the cables tensions.

B. Experiment

We also tested our approach in a real experimental setting,
using 4 quadrotors to transport a hollow box with dimensions
40× 31× 20 cm and approximate mass of 0.5 kg (see ??).
The task considered in this example is to guide the payload
along a trajectory specified on the X − Y plane, while the
remaining components of the pose of the payload are not
controlled. With this choice the system has a redundancy
equal to n − m = 2, which can be exploited to distribute
the tensions along the cables. In alternative, one could also
extend the task space to additionally command movements of
the payload along the vertical direction or rotations. Lastly,
we considered as limits for the cable tensions t = 0.1 N and
t = 5 N.

In this experiment the reference trajectory for the payload
is not predefined, but it is commanded online by a user
through a joypad. In Simulink we implemented: 1) the
differential kinematics algorithm that takes the reference
trajectory for the payload and computes online the reference
trajectory for the quadrotors; 2) the first two steps of the
control strategy, i.e., the loop in the task space and the
tension distribution. Finally, the reference trajectory for the

(a) Screenshot at t = 0 s. (b) Screenshot at t = 5 s.
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Fig. 4: Simulation 2

Payload

UAVs

Fig. 5: Snapshot during the experiment.

quadrotors as well as the required cables tensions are sent via
wireless serial communication to the UAV control layer that
is onboard the quadrotors. The interface between Simulink
and the serial channel is implemented using ROS and the
Simulink Robotics Toolbox. This interface is also used to
obtain from a Vicon tracking system the measurements of the
states of the quadrotors and of the payload with a frequency
of 120 Hz.
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(c) Reference and actual position
of quadrotor 1.
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Fig. 6: Results of the experiment.

Figure 6a shows the trajectory commanded to the payload
by the user. The comparisons between commanded and
executed motion for the payload and for a single quadrotor
are shown in Figs. 6b and 6c respectively. In both cases it
appears that the reference trajectory are followed quite well,
but there is an evident delay. Indeed, during our experiments
we experienced that the interface implemented through the
Robotics Toolbox introduces a substantial communication
delay and a slowdown on the Simulink model, limiting it to
run in real time with a frequency of 20 Hz. As a consequence
of these bottlenecks the motion of the quadrotors and of
the payload showed some oscillations that are better visible
from the companion video accompanying this paper. This
phenomenon is also visible in the tension td required from
the tension distribution and shown in Fig. 6d. Considering
these problems and the fact that we have used a simple
near-hovering controller without a closed control loop in
the cables tensions, the tracking of the trajectories shown
in Figs. 6b and 6c is very satisfactory.

VII. CONCLUSIONS

In this paper we have presented a novel solution to the
problem of cooperative aerial transportation of a suspended
payload using quadrotors. In comparison to previous works
on this topic we addressed the problem from a different per-
spective, i.e. looking to find a direct and intuitive kinematic
relation between the motion of the payload and the motion
of the quadrotors. By doing so, we have found a description
that is general (can be applied to other RCDPR), is very
intuitive, does not require pre-planning of the forces and is
suitable for a teleoperation framework. We are now planning
to further develop this framework in several directions. In
particular, we want to research 1) ways to use the internal
motions to achieve various task, both automatically or under

the command of a user, 2) a decentralized implementation
of the approach, 3) a new design for a quadrotor to improve
the cable connection and to make the robot more capable of
exerting forces.
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