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ABSTRACT
The ability to identify the target of a common action is fun-
damental for the development of a multi-robot team able to
interact with the environment. In most existing systems,
the identification is carried on individually, based on either
color coding, shape identification or complex vision systems.
Those methods usually assume a broad point of view over
the objects, which are observed in their entirety. This as-
sumption is sometimes difficult to fulfill in practice, and in
particular in swarm systems, constituted by a multitude of
small robots with limited sensing and computational capa-
bilities. In this paper, we propose a method for target iden-
tification with a heterogeneous swarm of low-informative
spatially-distributed sensors employing a distributed version
of the naive Bayes classifier. Despite limited individual sens-
ing capabilities, the recursive application of the Bayes law
allows the identification if the robots cooperate sharing the
information that they are able to gather from their limited
points of view. Simulation results show the effectiveness of
this approach highlighting some properties of the developed
algorithm.

1. INTRODUCTION
Robotic swarms and multi-robot systems are receiving

growing interest from the scientific community due to their
intrinsic easiness of design and manufacture, versatility, ro-
bustness to hardware failures, and capability to execute spa-
tially distributed tasks. Understanding and controlling a
swarm of this kind poses a range of research challenges that
are still to be addressed for robust real world applications
that demand several coordinated components involving con-
trol, localization, sensing and interpretation of the surround-
ing environment.

Among other issues in multi-agent perception, target iden-
tification is still one of the less studied, but most impor-
tant in order to let the system interact with the environ-
ment (e.g.: to individuate the object of a common action).
Several peculiarities of robotic swarms must be taken into
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account. First, the physical dimension of platforms con-
sidered in swarm robotics is usually one or two orders of
magnitude smaller than the typical dimension of the objects
in the environment. In addition, constraints on payload,
power consumption and computational power limit the ex-
teroceptive sensor equipment of the robots. Hence, each
robot is usually able to observe only some details (e.g.: one
or two edges) or some specific feature (e.g.: color or ma-
terial) of the sensed objects. At the current size of typical
swarm platforms (few to tenths of centimeters), this problem
arises when the robots are required to identify for example
cars, trees or buildings. However, considering the current
miniaturization trend, soon the same problem will consider
smaller objects of the environment as office furniture or tools
of everyday life.

Being identification usually considered a computer vision
topic, most of the state-of-the-art algorithms (e.g.: [16], [12],
[2]) make use of highly-informative sensors as cameras or 3D
range finders. Many robotic systems integrating the identi-
fication of an object (e.g.: [18], [4]) assume a broad point of
view (hence one single sensor is enough for the recognition),
perform the computations in a centralized fashion and are
computationally expensive and real-time-unfeasible on lim-
ited platforms. The idea of using local features of the objects
in order to perform their identification has been largely stud-
ied in literature [12], [2], [15], [9], but it has been exploited
mostly by means of a centralized entity and considering only
visual features.

A generalization of this approach is multiple-view scene
interpretation, which studies the problem of understanding
the environment given the images collected from different
points of view. The algorithms developed to address this
problem (e.g.: [17]) usually take advantage of common fea-
tures from the different views. In [1] the authors propose
a method for the selection of an optimal number of images
taken from different views of a 3D object in order to perform
the recognition. The authors of [19] propose two algorithms
for object recognition based on matching of scale invariant
features. In [6] the authors exploit the multi-view aspect
of the problem in order to reconstruct the cluttered parts
of the environment and discern the subject from the back-
ground. In [14], the authors propose a recognition method
to jointly classify the object observed by a network of smart
cameras. It is important to underline that most methods
are able to select informative local features of the observed
objects, thanks to their broad point of view, whereas each
small agent of a swarm can only rely on its limited, non-
selected point of view.
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In multi-robot systems, many authors ([5], [7]) have dealt
with the problem of jointly estimating the location of a com-
mon target by fusing the individual readings of the robots.
However, each robot still enjoys a wide point of view over
the scene. In [13], the authors developed a system to clas-
sify objects based on sound features and visual informa-
tions. For the best of our knowledge, this paper is the first
to explicitly address the problem of target identification in
robotic swarms even if several peculiarities of this type of
systems calls for ad-hoc algorithms. Its role is to introduce
and formalize the problem of target identification by means
of multiple heterogeneous low-informative and spatially dis-
tributed sensors, also proposing a distributed system for its
solution based on probability theory.

The rest of the paper is organized as follows. Section 2
formally introduces the problem of target identification by
means of multiple low-informative spatially-distributed sen-
sors. The developed method is presented in Sections 3, 4 and
5, which describes respectively the classification algorithm,
the type of measurements and the communication and distri-
bution of the computation among the team members. Sec-
tion 6 presents the first 2D implementation in simulation,
and Section 7 concludes the paper.

2. PROBLEM FORMULATION
Consider a heterogeneous swarm system A of n agents

A = {A1,A2, . . . ,An} living in a generic environment and
surrounding an object ω in such environment. Robots are
not aware of each other’s position, nor of their absolute po-
sitions in the world. We do not consider the problem of
localization, since our method will not use relative or abso-
lute positions. Similarly, in this paper we do not study the
problem of controlling the swarm so as to reach a situation
as described by our assumptions. In general, we assume that
the robots are able to move in swarm and to surround an
object avoiding collisions and maintaining communication
connectivity.

Each Ai is equipped with an exteroceptive sensor and
gathers a measurement zi of ω. In general, different robots
can be equipped with different sensors, and zi should be con-
sidered general. Possible types of sensors include cameras,
laser range finders, sonar and IR arrays, material detectors,
temperature and stiffness sensors among others. We will
discuss three specific types of sensors in Section 4, whose
simulation will be used to numerically validate the proposed
algorithms. In Section 4, we will take some additional as-
sumptions on the position assumed by each robot on the
basis of the different types of sensors. We denote by Z =
{zi, i = 1, . . . , n} the set of measurements collected by all
robots.

Moreover, we assume that robots are able to communicate
with all other robots within a given communication ray Cr.
As a consequence, the communication graph is undirected,
i.e.: if a Ai communicates with Aj , then also Aj commu-
nicates with Ai. The communication graph is defined as a
pair of sets of nodes N and edges E . Each Ai is represented
as a node i ∈ N , while an edge (i, j) ∈ E means that Ai

is communicating with Aj and vice versa. We assume the
communication graph to be connected.

We assume that in the world in which the robots live there
is one and only one object, denoted by ω, out of a set of m
possible types of objects Ω = {ω1, ω2, . . . , ωm}. Each ωj

is identified by a label lj = j, with L = {l1, l2, . . . , lm}.

Finally, we assume that the measurement zi gathered by
each generic Ai refers to ω, hence in general Z is implicitly
Z(ω) a function of ω. We can now define the identification
problem as follows.

Problem 1. The problem of identifying the object ω out
of the set Ω through the measurements Z = {zi, i = 1, . . . , n}
is the problem of assigning to ω a label l = cl(Z) out of the
set L on the basis of the measurements Z, where cl(Z) = lj
if and only if ω is recognized to be of type ωj.

Let be O(ω) a random variable representing the type of the
object:

O(ω) = O = j ⇐⇒ ω = ωj (1)

Then we can define the probability p(O = j) as the probabil-
ity that ω is of type ωj . A common policy to solve Problem 1
and assign a label to ω is to take the final decision on the
classification as the value which maximizes it:

cl(Z) = argmax
l∈L

p(O|Z). (2)

Whenever a labeling policy cl(Z) is given in this form, it is
referred to as Bayes classifier. The system must estimate
p(O|Z) in order to take a decision. Then, the focus of this
work will be the distributed estimation of p(O|Z).

3. NAIVE BAYES CLASSIFICATION
Even if the classification rule (2) seems simple, a charac-

terization of the conditional probability p(O|Z) is not straight-
forward. From now on, we will focus on computing an es-
timate p̂(O|Z) of such probability. Through the application
of the Bayes rule, p(O|Z) can be rewritten as:

p(O|Z) =
p(O)p(Z|O)

p(Z)
. (3)

The recursive application of the definition of conditional
probability leads to the factorization of the numerator of
the right side of equation (3) as:

p(O)p(Z|O) = p(O)p(zi, i = 1, . . . , n|O) = (4)

=p(O)p(z1|O)p(z2|O, z1) . . . p(zn|O, z1, . . . , zn−1).

Even if equation (4) allows the recursive computation of
p(O|Z) using the measurements one by one, the characteri-
zation of the dependency between the zi’s can still prevent
the actual computation of each factor. In addition, we aim
at designing a distributed scheme. Indeed, those two re-
quirements can be met considering a simplified version of
the above algorithm.

In the naive Bayes classifier, the measurements are as-
sumed to be conditionally independent from each other. Al-
though such assumption is quite strong, experimental stud-
ies have shown the validity of this approach in several prob-
lems (e.g.: [11]). Hence, exploiting the conditional inde-
pendence of the zi’s (i.e.: p(zi|zj) = p(zi)∀i 6= j) we can
drastically simplify equation (4):

p(O)p(Z|O) = p(O)

n∏
i=1

p(zi|O). (5)

In order to have a complete form for the estimate of p(O|Z),
we also note that the denominator of equation (3) is inde-
pendent from O, hence it is a constant that can be computed
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normalizing p(O|Z) such that∑
ω∈Ω

p(O|Z) = 1. (6)

Therefore, by this consideration and by using equation (5),
equation (3) can be rewritten as:

p(O|Z) = α p(O)

n∏
i=1

p(zi|O) (7)

where α is a factor ensuring the validity of equation (6).

4. MEASUREMENTS
Most of the difficulties in the application of equation (7)

are associated with modeling the probability distributions
p(zi|O). In particular, for each type of sensor used to gather
information on ω it is necessary to

i) build models of the ωj ’s which encase the features of the
objects that are measurable by means of that sensor;

ii) exploit these models in order to compute estimates of
p(zi|O).

Note that p(zi|O) = p(zi|O = j) expresses the probability
of obtaining the measurement zi given that the object ω is
of type ωj . Then, it is worth to underline that p(zi|O) can
be computed independently for each possible ωj ∈ Ω. In
the following, we consider three types of sensors both for
simulation and example purposes: extremely low-resolution
cameras, laser scanners and relative reflectance sensors.

4.1 Color measurements
Using images of an object in order to recognize it is a

well known and studied problem in computer vision. State-
of-the-art computer vision techniques for object recognition
make use of feature extraction algorithms to select useful
information, such as edges, shapes and local features, about
the observed objects from the images gathered by cameras.

However, an image at decent resolution (e.g.: 640×480)
provides way more information with respect to what a robot
with limited computational power is able to handle. In addi-
tion, the aforementioned feature extraction techniques usu-
ally constitutes an increase of the computational load for
the robots, and should be avoided in our setting. Neverthe-
less, a camera can still provide useful information, such as
the color of the sensed object for a relatively low price. For
these reasons, we will consider a very low resolution RGB
camera with 8×6 pixels only, which will be used in order to
sense the color of a limited region of ω. Ideally, the devel-
oped method can be applied also with a 1 pixel camera.

If Ai is equipped with such camera, then zi is constituted
by an ordered set of 8×6 pixels zi = {xkl : k = 1, . . . , 8, l =
1, . . . , 6}, each pixel xkl = (rkl gkl bkl) ∈ X 3, with X =
[0, 255], containing the red, green and blue (RGB) values
of the color of a point of the surface of ω. The measured
color is affected by measurement error that we assume to be
zero-mean and known-covariance Gaussian additive noise.
In general, environment illumination condition also affects
the colors sensed by cameras, but in our case we assume that
the robots are sensing a very small portion of ω from a close
distance, so that they are able to illuminate it, drastically
reducing such effects which is then considered to be part of
the measurement noise.
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Figure 1: (a) Four objects of type apple; (b) generalized
color histogram of the object apple computed using the four
images in (a); (c) a test object and the measurement gath-
ered by a robot.

The models of the generic ωj ∈ Ω used by the robots
equipped with cameras is a normalized color histogram h(ωi)
of ωi built on one or more pictures of one or more objects
of type ωj . The color histogram ĥ(I) of an image I is a

q×q×q 3-dimensional matrix, each cell ĥijk representing the
number of pixels of I whose RGB values are in the setHijk =
[(i−1)a, ia[×[(j−1)a, ja[×[(k−1)a, ka[, where a = 256/q is
the discretization step. The histogram provides a compact
summarization of the distribution of data in an image, and
has been largely used in computer vision, both for colors [16]
and other features [15] [9].

Let be h̄ =
∑

(i,j,k) ĥijk, then h(I) = ĥ(I)/h̄ is the nor-

malized color histogram such that
∑

(i,j,k) hijk = 1, and

each cell hijk of h(I) contains the probability that pick-
ing a random pixel x = (r g b) of I, then x ∈ Hijk. Note
that given a certain x = (r g b), then the indexes of the
cell containing its probability can be easily computed as
i = br/ac, j = bg/ac, k = bb/ac, where b�c indicates the
floor of the quantity �. Considering the noise on the mea-
surements of the camera, and possible shades of the observed
object, then a good practice in order to obtain a more re-
alistic model is to apply a three-directional Gaussian filter
g(·) to h(I) in order to have a more smooth normalized his-
togram g(h(I)).

Considering c different images I1, . . . , Ic of one or more
objects of type ωj , then the normalized color histogram
h(ωj) of ωj can be defined as

h(ωj) =
1

c

c∑
i=1

g(h(I)). (8)

Once h(ωj) is known, it is straightforward to compute an
estimate of p(zi|O = j) as the mean of the probability of
each pixel in the measurement image zi:

p̂(zi|O = j) =
1

8 · 6
∑
x∈zi

hbr/acbg/acbb/ac. (9)

Note that another feasible estimate p̂(zi|O = j) could be
computed as the product of all hbr/acbg/acbb/ac, but this
would imply the independence of the measurements of the
single pixels, which is not a realistic assumption since the
measured points of the surface of ω are all close to each other.
An example of generalized histogram matrix of an apple is
depicted in Fig. 1, as well as the measurement gathered by
a robot on a test object.

4.2 Laser scanner measurements
A second feature that we want to exploit in order to iden-
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Figure 2: (a) Field of view of a laser scanner; (b) particles
selected for the fourth image of Fig. 1a; (c) a test object and
the measurement gathered by a robot.

tify ω is its profile. It is undoubtable that the profile of part
of an object can provide useful information for its identifi-
cation. For example, the profile of a box contains corners
and straight lines, while the profile of a bottle is a circum-
ference. Performing identification using these features can
be done at relatively low computational cost while obtaining
interesting results. Then, we chose a laser range finder as
second type of sensor, also due to its popularity among the
robotics community.

If Ai is equipped with a laser range finder, then zi is
constituted by an ordered set of bearing–distance pairs zi =
{(b d) : −bm ≤ b ≤ bm, d ≤ dm} representing the contour
of the object in the field of view of the sensor, delimited by
−bm, bm and dm and depicted in Fig. 2a.

The model of the generic ωj ∈ Ω used by the robots
equipped with laser scanners is a set of particles generated
on c images I1, . . . , Ic of objects of type ωj . We assume that
the generic robot Ai equipped with a laser scanner is able to
position itself with a limited error at a fixed distance df from
ω. This detail largely reduces the number of needed parti-
cles in order to model each ωj , speeding up both the offline
modeling of ωj and more importantly the online computa-
tion of p(zi|O = j). In fact, in order to build the model of
ωj , we extract nc random particles for each Ik, k = 1, . . . , c,
at distance df from the contour of the object and oriented
in the direction of the center of the object. In Fig. 2b we
show the particles generated for the fourth image of Fig. 1a.

Then, considering c images, the model of ωj is a set Pt =
{pt, t = 1, . . . , cnc} of cnc particles, each particle pt contain-
ing the measurement zi that Ai would gather if it was in the
corresponding configuration. By the knowledge of the model
of the sensor (i.e.: the noise on the measurements and the
noise on the positioning of the robot) it is easy to compute
p(zi|pt). Then, the estimate of p(zi|O = j) is:

p̂(zi|O = j) = max
pt∈Pt

p(zi|pt) (10)

In this case, we chose to select the maximum among the
particles in order to magnify the effect of peculiar parts of
the objects. Another viable solution would have been to
compute the average over all particles of an object. In both
cases, equation (10) will produce higher probabilities for the
objects whose models include particles comparable to the
collected measurement. An example of measurement from
the laser scanner is reported in Fig. 2c.

4.3 Reflectance measurements
Another feature that can be used to discriminate among

objects is their material. Even though there is no sensor able
to measure directly a material, there are methods to measure

useful quantities in order to infer the material of a sensed
surface. State-of-the-art approaches range from analysis of
contact vibrations [11] to analysis of acoustic features [20].

A promising field derived by remote sensing uses multi-
and hyper-spectral analysis (e.g.: [10]). As a particular ma-
terial usually has a specific color given by the different re-
flection rate of electromagnetic (EM) radiation depending on
the wavelength in the visible spectrum (390-700 nm), this
behavior holds also in the non-visible part of the EM spec-
trum. Hence, considering the whole spectrum in order to dis-
criminate objects may give a strong advantage with respect
to considering only the colors derived by the visible light.
However, precise multi- and hyper-spectral equipments are
usually heavy and extremely expensive. Moreover, the huge
amount of information that this type of camera can provide
prevents its application in robotic swarms.

Nevertheless, there exist relatively cheap sensors (e.g.:
ALTA II reflectance spectrometer) that can measure the rel-
ative reflectance (the ratio of the reflected EM radiation over
the incident EM radiation, from now on only reflectance) of
a small portion of an object at one or more specific wave-
lengths. The working principle is simple: enclose a small
portion of an object with a probe so that there is no exter-
nal EM radiation impacting on that surface, emit a radiation
at a given wavelength with a suitable LED and measure the
percentage of radiation that is reflected. Given its simplicity,
this sensor is suitable for the application in robotic swarms
and we will consider it as third type of sensor.

Let be Ai a robot equipped with a reflectance sensor, then
zi = r, r ∈ R+

0 is a single value expressing the reflectance of
ω in the position of Ai for a wavelength of 810 nm, where
r = 0 means no reflection at all and r = 1 means complete
reflection. Note that the reflectance can also be r > 1, mean-
ing that the object reflects more EM radiation than the inci-
dent one (i.e.: it emits radiation at the selected wavelength).
We assume that r is affected by zero-mean known-covariance
Gaussian noise. We chose the wavelength of 810 nm because
it is outside of the visible spectrum, hence it provides infor-
mation not already contained in the colors, but it is in the
Near-Infra-Red (NIR) spectrum, close to visible radiation,
hence it is easy to measure with cheap sensors.

In addition, the values of reflectance in visible and NIR
spectra of many objects and materials are available in sci-
entific literature (e.g.:[8], [3]) and on the web. Then, it is
possible to create realistic models of several objects even
without using the actual sensor. The first step consists in
preparing grayscale images of objects of type ωj containing
in each pixel a value representing the reflectance of those
objects at the chosen wavelength in the corresponding point
of the objects. Since the relative reflectance values of most
objects are in the range between 0 and 1, and the values
of the pixels of a grayscale image range from 0 to 255, a
natural choice is to scale the reflectance values by a con-
stant k = 200, such that a pixel value of 0 correspond to a
reflectance of 0% and a pixel value of 200 correspond to a
reflectance of 100%. This choice gives also the possibility to
include values greater than 100% in order to model objects
that emit EM radiation at the selected wavelength. Exam-
ples of such images are reported in Fig. 3a for the objects
depicted in Fig. 1a.

Through those images Ir1 , . . . , Irc , it is possible to build a
normalized reflectance histogram hr(ωj) of ωj with the same
method described for the normalized color histogram. First
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Figure 3: (a) Grayscale images used to build the model of
the apple; (b) resulting generalized reflectance histogram.

we compute the reflectance histogram ĥc(Irl ) of each Irl as a

q-dimensional vector, each cell ĥc
i representing the number

of pixels of Irl whose grayscale values are equal to i. Then,
the normalized reflectance histogram hr(ωj) of ωj is

hr(ωj) =
1

c

c∑
l=1

g(h(Irl )). (11)

Once hr(ωj) is known, it is straightforward to compute an
estimate of p(zi = r|O = j) as:

p̂(zi|O = j) = hc
(200r). (12)

The generalized reflectance histogram computed using the
four images in Fig. 3a is reported in Fig. 3b.

5. DISTRIBUTED IMPLEMENTATION AND
COMMUNICATION

One of the features of swarm systems is the possibility
to distribute the computational load on multiple robots, al-
though the way this distribution can be implemented is not
always straightforward. Luckily, the recursive formulation
of the naive Bayes classifier (equation (7)) offers an easy
paradigm for distributing the computation among the com-
ponents of the team. Each Ai can compute the probability
distribution p(zi|O) associated to its measurement and then
communicate it to its mates. This information, thanks to the
factorization expressed by equation (7), is all that is needed
to compute the probability distribution of the objects, hence
to classify ω among the set of the known objects.

This approach, despite its simplicity, brings several ad-
vantages. First, the computational load of computing all
the p(zi|O) is distributed among the robots. Second, the
messages exchanged by the robots are all of the same type,
containing p(zi|O) and not directly the measurements. Last,
but not less important, each measurement zi remains local
on Ai, so that Ai has to deal only with one type of mea-
surements: the one it gathers. This means that the robots
equipped with a certain type of sensor need only to know
the models of the ωj ∈ Ω suitable for their own sensor. The
measurements coming from the other robots, being already
transformed in probabilities, does not require any previous
knowledge (i.e.: model). Then, for example, it is also pos-
sible to add at run-time new sensors without modifying the
already set up robots.

The drawback of this choice is the necessity to implement
a suitable communication scheme in order to spread the in-
formation in the team. At this aim, a classical gossiping
algorithm can be used. For simplicity, we assume that the
communication among robots happens at fixed time instants
t = T, 2T, . . . , kT, . . . with T communication period, and
we assume that all the robots broadcast the information to

their communication neighbors simultaneously. The infor-
mation sent from Ai to Aj at the communication step k
(i.e.: t = kT ) will be available to Aj at step k + 1. Then,
the gossiping algorithm can be implemented following two
simple rules:

i) at the first communication step, each Ai sends its
P (zi|O) to the neighbors;

ii) if in the k-th communication step Ai receives P (zj |O)
for the first time, at the (k+ 1)-th communication step
Ai communicates P (zj |O) to its neighbors.

This algorithm can be also generalized to the case of non
simultaneous communication to take into account a more re-
alistic model of communication and possible dropped mes-
sages. However, the optimization of the communication
scheme goes beyond the scope of this paper.

Denote by Ai
k the set of robots whose probabilities p(zj |O)

are known to Ai at step k, and let be Zi
k = {zj : Aj ∈ Ai

k}
the set of their measurements. At each step k, Ai can com-
pute p(O|Zi

k) through equation (7), until Ai
k = A and then

p(O|Z) = p(O|Zi
k). However, a more efficient way to com-

pute p(O|Z) is to iteratively update p(O|Zi
k) without recom-

puting every time all the products. For example, assume
that Ai

k+1 = {Ai
k,Ah}, which means that at step k + 1 Ah

receives for the first time p(zh|O). Then p(O|Z) can be
computed through the iterative application of:

p(O|Zi
k+1) = αp(O)

∏
j∈Ai

k+1

p(zj |O) =

= αp(O)p(zh|O)
∏

j∈Ai
k

p(zj |O) = α1p(O|Zi
k)p(zh|O). (13)

6. SIMULATIONS
To test the developed system, we have set up a 2D sim-

ulation framework and a database of 12 types of objects
ωj (leaf, banana, sunflower, apple, starfish, butterfly, grape,
hammer, pineapple, strawberry, wrench, scissors). For each
ωj , four images were used in order to build the models for
the three sensors as described in Section 4, hence the whole
database is built through 48 images, shown in Fig. 4. We
have simulated the measurements as described in Section 4,
considering a 8×6 camera, a laser scanner with 200 rays and
a field of view limited by bm = 120◦, dm = 200. Moreover,
we have fixed the discretization step a of the normalized
color histogram to a = 8 (hence q = 32), and we have se-
lected 600 particles (150 per image) to build the models for
the laser scanner measurements.

In a single simulation, an object (image) ω is placed in
the scene, and multiple robots are randomly deployed over
it (image and reflectance measurements) or in its proximity
(laser scanner). An example of such simulation is shown
in Fig. 6, where the blue shapes are the fields of view of
the robots equipped with the laser scanners, the green dots
are robots equipped with the reflectance sensors and the
magenta dots are the robots equipped with the cameras.

Once the deployment is done, the communication radius
is selected as the minimum Cr such that the communication
graph is connected. In general, Cr is not a parameter that
can be freely chosen, and should be fixed in the beginning
of the simulation. However, we chose to minimize it to have
as least connections as possible, in order to stress in each
simulation the communication among the robots. In Fig. 6
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Figure 4: Images used to build the models of the objects
(training set).

Figure 5: Images used for testing purpose (testing set).
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Figure 6: Example of deployment of the robots and the
communication graph.

we show also the communication graph corresponding to the
presented simulation.

At the beginning of the simulation, each robot collects a
measurement and uses the appropriate model set (i.e.: de-
pending on its type of sensor) to compute p(zi|O). Then,
the communication and the iterative application of equation
(13) is performed for each robot, until the communication
among the robots ends because all robots have received all
the information from the other robots and have computed
the same values for p(O|Z). In the final step, the robots
assign a label to ω based on equation (2).

We have conducted extensive simulations in order to as-
sess the quality of the recognition on a set of 60 images,
5 for each ωj , shown in Fig. 5 and to test different config-
urations of the swarm system varying the total number of
robots and the type of sensors equipped. In particular, we
have tested the system with 6, 15 and 30 robots. For each of
those values, we have tested the cases of all robots equipped
with cameras, all robots equipped with laser scanner, all
robots equipped with reflectance sensors, half of the robots
equipped with cameras and half equipped with laser scanner,
and finally one third of the robots equipped with each type
of sensor, for a total number of 15 different configurations..

In order to have a massive quantity of data, for each of the
aforementioned configurations we have performed 20 com-
plete simulations for each image in the testing set (then 100
simulations for each ωj , and 1200 simulations to test each
configuration of the swarm). At the end of each simulation,
the type of object selected by the robots for ω is the one

Le Ba Su Ap St Bu Gr Ha Pi Sr Wr Sc

Le 77 0 0 0 0 0 1 0 0 0 0 0

Ba 20 100 0 0 1 0 0 0 0 0 0 0

Su 1 0 100 0 0 0 0 0 0 0 0 0

Ap 0 0 0 75 0 0 0 0 0 4 0 0

St 0 0 0 0 99 0 0 0 0 0 0 0

Bu 0 0 0 0 0 100 0 0 0 0 0 0

Gr 0 0 0 0 0 0 90 0 0 0 0 0

Ha 0 0 0 0 0 0 1 97 0 0 0 0

Pi 0 0 0 0 0 0 0 0 100 0 0 0

Sr 2 0 0 25 0 0 8 0 0 96 0 0

Wr 0 0 0 0 0 0 0 3 0 0 99 0

Sc 0 0 0 0 0 0 0 0 0 0 1 100

Table 1: Confusion matrix for simulations with 30 robots, 10
equipped with cameras, 10 with laser scanners and 10 with
reflectance sensors. Abbreviations: Le - Leaf; Ba - Banana;
Su - Sunflower; Ap - Apple; St - Starfish, Bu - Butterfly; Gr
- Grape; Ha - Hammer; Pi - Pineapple; Sr - Straweberry;
Wr - Wrench; Sc - Scissors.

C L R C+L C+L+R
1 robot 29.5 49.5 53.2 - -
6 robots 67.5 48.5 80.2 70.3 86.33
15 robots 69.7 56.9 86.3 78 93.6
30 robots 69.1 64.1 90.3 78 94.4

Table 2: Percentage of correct associations for all 15 config-
urations of the swarm. C+L is camera and laser scanner,
C+L+R is camera, laser scanner and reflectance sensor.

that receives the highest probability.
The results of the simulations for each configuration can

be summarized in a confusion matrix as the ones presented
in Table 1, in which the columns and the rows express the
actual and estimated types of ω respectively. Each cell con-
tains the percentage of correct identifications for the corre-
sponding case. It is evident that the higher are the numbers
on the main diagonal, the better the algorithm performs,
while the numbers off the main diagonal suggest similarities
among the object that leads to non-correct identifications.
This is the case for example of the apple and the straw-
berry: they are both red, with almost round contours and
made of similar organic material (hence producing similar
measurements with the reflectance sensor).

A more compact representation of the overall performance
of a configuration can be computed as the overall percentage
of correct identifications. Those values are reported for all 15
studied configurations in Table 2, and show how in general
the performance increases with the number of robots. More
interesting, whenever different types of measurements are
used together the results are better than the results of the
best of the two types of sensors alone.

In addition, Table 2 includes also the correct identification
rate of the single sensors, which are interesting to assess the
improvement to the identification introduced by the cooper-
ation among the robots. Interestingly, the best sensors seem
to be the reflectance sensors, closely followed by the cam-
eras. As we will explain in the conclusion, we want to check
this behavior with real data gathered with real sensors.

7. CONCLUSIONS
In this paper we have introduced and formalized the prob-

lem of target identification in robotic swarms. The solution
that we propose relies on the naive Bayes classifier paradigm
in order to distribute the computation among the team and
standardize the communication messages exchanged by the
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robots. We have performed an extensive simulation study
in 2D in order to assess the quality of the recognition and
to delineate some properties of the algorithm.

Future works will follow three main directions. From a
theoretical point of view, we plan to study the properties of
the algorithm computing the mean value and covariance of
the final probability p(O|Z). In order to ensure real-world
applicability we will address the case of multiple objects in
the environment and apply clusterization of the team mem-
bers based on proximity estimated through communication.

The developed system will be employed in 3D simulations
and experiments, which will include not only the identifica-
tion phase but also the important phase of the motion of
the swarm. In order to validate and improve the simulated
measurements, we plan to use data produced using actual
sensors and real objects. In particular, although all the used
values are taken from scientific literature, we aim at validat-
ing our models for the reflectance sensors. Additional types
of sensors will also be evaluated, e.g.: temperature and stiff-
ness sensors among others.
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