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Autonomous Vegetation Identification for Outdoor Aerial Navigation

Caterina Massidda∗, Heinrich H. Bülthoff∗† and Paolo Stegagno∗

Abstract— Identification of landmarks for outdoor navigation
is often performed using computationally expensive computer
vision methods or via heavy and expensive multi-spectral and
range sensors. Both choices are forbidden on Micro Aerial
Vehicles (MAV) due to limited payload and computational
power. However, an appropriate choice of the hardware sensor
equipment allows the employment of mixed multi-spectral
analysis and computer vision techniques to identify natural
landmarks. In this work, we propose a low-cost low-weight
camera array with appropriate optical filters to be exploited
both as stereo camera and multi-spectral sensor. Through stereo
vision and the Normalized Difference Vegetation Index (NDVI),
we are able to classify the observed materials in the scene
among several different classes, identify vegetation and water
bodies and provide measurements of their relative bearing and
distance from the robot. A handheld prototype of this camera
array is tested in outdoor environment.

I. INTRODUCTION

Recent advances in robotics have made possible a growing
number of real world applications of robotics systems in
structured environments, in which external sensors (e.g.: mo-
tion capture devices) or artificial a priori known landmarks
are available. However, in order to employ robotic systems
in unstructured outdoor environments, the robots should be
able to autonomously identify and select natural landmarks as
for example trees and water bodies and collect some relative
measurement as bearing and distance. Among other tasks,
this knowledge can be used to achieve localization, plan the
action or perform visual servoing.

In most previous works, the identification of particular
features in the environment as roads and trees is performed
using computationally expensive computer vision algorithms,
either employing only cameras or in combination with some
range sensor. In one of the first papers on this topic [1]
the authors fuse the information gathered from a sonar
and a camera to measure the relative position of a tree.
However, their method requires many assumptions on the
shape of the trees and is suitable only in particular situations.
In [2] the authors employ color segmentation in order to
extract roads from an image. In [3], trees are identified
using edge extraction and circular features identification.
Many works [4], [5], [6] focus on the identification of most
salient regions of an image in order to select landmarks for
autonomous navigation, independently from the actual type
of identified landmark. In [7], a classification approach has
been implemented in order to extract tree trunks from the
camera images. The authors of [8] employed a contrast-based
and shape estimation method to estimate the position and the
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size of trees in the scene through the images gathered by
an omnidirectional camera. With the advent of 3D scanners
and RGB-D sensors, similar algorithms (shape identification,
clustering) have been applied [9] on 3D point clouds.

The problem of the identification of vegetation, water bod-
ies and other materials from satellite and airborn images is
well known in remote sensing. However, it is usually solved
exploiting a completely different approach based on the
measurement of the reflectance of the Electro-Magnetic (EM)
radiation at different wavelengths. This is done collecting
multiple images of the same scene at different wavelengths,
not only in the visible spectrum but also in ultra-violet and
infrared. In [10], the authors have employed this principle to
identify the vegetation for an autonomous navigation system.
In particular, they have used a cold mirror to split the visible
and the Near Infrared (NIR) part of the light among two
cameras, and the two resulting images are used to compute
the pixel-by-pixel Normalized Difference Vegetation Index
(NDVI, see Sect. II). However, their setup, described in [11],
includes many additional sensors as sonars and laser scanners
and is not suitable for the application on MAVs.

In this paper, we are interested in this second approach.
Being our reference platform an MAV, we aim at integrating
a low-cost low-weight multispectral sensor in a landmark
detection system. Unfortunately, off the shelf multi-spectral
sensors are still quite expensive and heavy, hence not suitable
for our purpose. In addition, we would also like to obtain
metric information (e.g.: distance, size) of the observed
objects, but a normal spectral sensor does not provide it. In a
normal setup, as the one proposed in [10], metric information
can only be retrieved by means of additional range sensors,
but the limited payload of MAVs does not allow this option.
For this reason, we have decided not to rely on the principle
of the cold mirror to design our sensor.

Another interesting attempt to build a low-cost spectral
camera relies on the idea of creating an array of cameras
and doting each of them with a different optical filter [12].
Similarly, the authors of [13] outfitted a fixed-wing UAV
with an array of sensors including a multi-spectral camera.
One issue that must be addressed in this type of sensor array
is the matching between corresponding points of the images.
In fact, in order to extrapolate useful data, it is necessary to
identify all the pixels in the different images that refer to the
same physical object. Unfortunately, this matching is highly
dependent from the distance of the observed object. Hence,
without metric information it is not possible to match the
pixels in the images collected at different wavelengths.

In this work, we propose a sensor design to use the same
sensor both as stereo camera and multi-spectral camera,
so that we can simultaneously solve the problem of the
pixel association in the spectral camera and obtain metric



information. We use two cameras as a stereo pair and
compute the corresponding disparity and depth maps. Using
this information, we are able to reconstruct the point of view
of the other camera(s), and compute the correct matching for
each pixel of the image. The matched images will then be
used to classify the observed objects in a given number of
different classes, and finally identify landmarks as objects
in the environment of a certain type. The final outcome is
a point-cloud of the landmarks that can be then used in the
different tasks of outdoor navigation.

It is worth noting that in the last years there has been a
plethora of monocular and binocular range, ego-motion or
visual odometry systems developed for use on unmanned
aerial vehicles (e.g.: [14], [15], [16]). However, for the best
of our knowledge, our system is the first to integrate multi-
spectral classification and stereo vision in a single low-cost
low-weight sensor suitable for the application on MAVs.

The rest of the paper is organized as follows: Section II
introduces some background on multi-spectral analysis and
the NDVI. Section III describes our hardware setup, while
Section IV describes the software used to make the online
unsupervised classification. Sections V and VI present re-
spectively the experimental results and the conclusions where
we describe the future applications and improvements.

II. BACKGROUND ON SPECTRAL ANALYSIS

Multi-spectral analysis is a technique to classify materials
currently applied in many fields as topography, geology,
archeology among others. It is based on the physical prin-
ciple that the percentage of electromagnetic (EM) radiation
reflected by a given material (reflectance) varies with respect
to the wavelength of the incident radiation. The reflectance
of a material constitutes a sort of ‘unique spectral signature’,
and some examples are shown in Fig. 1.

The knowledge of such spectral signatures is used to
identify the type of observed surfaces. Ideally, measuring the
whole spectral signature of a surface and matching it with the
spectral signatures of known materials from a database will
allow its identification. However, sensors able to measure
enough points to build the whole spectral signature of an
object, known as hyper-spectral cameras, are even more
expensive and heavy than multi-spectral cameras. On MAVs,
the sole option is to rely only on few wavelengths

When working under this condition, one technique of
spectral analysis consists in developing a mathematical com-
bination of the collected values to accentuate the spectral
properties of the targeted materials. Among those indexes,
the NDVI was developed by NASA to identify vegetation and
study its status of health. Let be RED and NIR respectively
the spectral values relative to a surface in the red and Near
Infra Red (NIR) bands, then the equation for the NDVI is:

NDVI =
NIR− RED

NIR + RED
(1)

in which the difference of the NIR and RED values is
normalized by their sum. The normalization scales the NDVI
to the set [−1, 1] and reduces the influence of atmospheric
absorption and the artifacts related to sensor noise.
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Fig. 1: Spectral signatures of some materials [18].

Since the NDVI is largely used, it is possible to retrieve
in literature many values of common materials of outdoor
environment, e.g. [17]. A classification largely accepted in
the scientific world differentiate the materials in four main
macro-areas ωc, c = 1, . . . , 4.

The first macro-area ω1 includes a wide variety of healthy
vegetation, and account for the strong absorption in the
red band due to clorophilla and the equally strong reflec-
tion of the NIR EM radiation of the green vegetation.
The two effects result in high values of the NDVI index
(NDVI(ω1) > 0.6). Low and dry vegetation fall in the
category ω2, in which the two phenomena are less strong,
hence the NDVI values (0.2 < NDVI(ω2) < 0.6) are still
positive but less than the previous category. Bare soil, as
well as concrete and some other man-made materials, have
in general a slightly increasing spectral signature (Fig. 1),
while the spectral signature of asphalt is nearly flat. The
corresponding NDVI values (0 < NDVI(ω3) < 0.2) are still
positive but close to zero. Finally, water in lakes, rivers and
seas, as well as snow, have a stronger absorption in the NIR
band with respect to the red band, resulting in negative NDVI
values (NDVI(ω4) < 0). Summarizing:

NDVI(ω1) > 0.6 0.2 < NDVI(ω2) < 0.6

0 < NDVI(ω3) < 0.2 NDVI(ω4) < 0. (2)

The classification of the sensed environment into those
classes is also the target of this work.

III. HARDWARE SETUP
The camera array consists of three USB 2.0 mvBlueFOX-

200wg grayscale CMOS global shutter cameras mounted in
a straight line on a 3D printed frame shown in Fig. 2a. The
cameras have a resolution of 752x480 pixels and offer a
complete control to the user, allowing for example exter-
nal triggering and the setup of the exposure time. In the
following, we will refer the left, central and right cameras
respectively as CamL, CamC, and CamR. CamC is
positioned in the middle between CamL and CamR.

Each camera is equipped with an S-mount low distortion
(dis < 0.2%) Lensagon B5M41430ND lens. The CamL and
CamR lenses are equipped with a dark red bandpass filter
(wavelength = 660 [nm]) with a diameter of d = 22.5[mm].
The CamC lens is equipped with an infrared bandpass filter
(wavelength = 850 [nm]) with the same diameter. The frame
with the cameras, lens and filters are shown in Fig. 2b. This
layout allows the use of CamL and CamR as stereo pair.

An important factor in the choice of camera and lenses is
their efficiency with respect to the different wavelengths. In
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Fig. 2: (a) the cad model of the camera support; (b) the
camera array with lenses and filters.
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Fig. 3: Efficiency of the two filters used in the multispectral
sensor. The light and dark red plots show respectively the
transmission efficiency of the red filter and of the red filter
mounted on the camera. The light and dark green plots show
respectively the transmission efficiency of the NIR filter and
of the NIR filter mounted on the camera. The dark dashed
line shows the quantum efficiency of the camera sensor.

particular, we considered the quantum efficiency QE of the
camera sensor and the transmission efficiency of the filters.
The two contributions must be considered together in order to
obtain the total efficiency of the filter/camera sensor system.
The QE is related to the ability of the sensor to respond
to the incoming photon signal and to its conversion into a
measurable electron signal. The QE is usually expressed as
the probability that a photoelectron will be released for each
incident photon, and is a function of the wavelength λ of
the incident light (QE , QE(λ)). The selected sensor is
sensitive in the bands of interest (red and NIR).

The transmission efficiency of the filters is the ratio of the
transmitted power over the incident power, and is again a
function of the wavelength λ. In our case, we refer to the
transmission efficiency of the red and NIR filters respectively
as TERed and TENIR. The plots of the total efficiency
of the red and NIR filters/camera systems with respect to
the wavelength λ, respectively ERed(λ) = QE · TERed and
ENIR(λ) = QE · TENIR, are shown in Fig. 3, along with
QE, TERed and TENIR.

The three cameras are connected through USB ports
to a quad-core i5-3337u @1.8GHz laptop which runs the
software to acquire the camera images and performs the
classification. The overall weight of the 3D printed frame,
cameras, lenses and filters is ' 100g, while the total cost of
those components is below 1000 Euros. It is worth noting
that some commercial UAVs1 are already equipped with
equivalent computational units. However, we plan in the
future to port our algorithms to a more compact ARM-based
board which can be easily embedded on an MAV given its
weight (< 80g) and limited power requirements.

1e.g.: AscTec Firefly and AscTec Pelican
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Fig. 4: Block diagram of the developed system.
IV. SOFTWARE SETUP

A block scheme of the software to acquire the camera im-
ages and perform the unsupervised classification is provided
in Fig. 4. We will denote the images gathered from the left,
central and right cameras respectively as RedL, NIRC and
RedR. Each camera collects a frame in the same instant,
capturing the same scene from three different points of view.

A precondition to perform the classification is to ensure
that the images contain useful information by an appropriate
selection of the exposure times of the cameras. Since CamR
and CamL will be used as a stereo pair, it is in general good
practice to select the same exposure time ExTRed for both
cameras, while the exposure time ExTNIR of CamC can be
set independently. Hence, we implemented two independent
PID controllers to regulate the brightness of the images,
using as input the mean value of the pixels of the images.

The first step of the classification is to find the correspon-
dences among the pixels of RedL and RedR and the pixels
of NIRC, or equivalently to reconstruct with RedL and
RedR the same point of view of NIRC. As mentioned in
Section III, this is done by using CamL and CamR as a
stereo pair. The software computes the disparity map DRed

of RedL and RedR and uses it to reconstruct the same point
of view of the central camera CamC. In this way, we have
two images RedC(RedL,RedR) and NIRC taken from the
same point of view with two different bands. From RedC
and NIRC it is possible to compute the pixel by pixel NDVI
value to obtain the NDVI matrix, denoted by NDV I , as we
will show in Section IV-A. This can be used to classify the
surfaces according to standard values known from literature.

However, since NDV I is usually corrupted by consistent
noise (due to e.g.: mismatches in the association, difference
in the illumination, etc.), the classification is conducted
considering spatial information in addition to spectral infor-
mation. The application of such clustering algorithm, based
on [19] and explained in detail in Section IV-B, leads to a
consistent reduction of outliers and erroneous classifications.

A. NDVI
The matrix NDV I cannot be computed directly on the

pixel values of RedC and NIRC. In fact, two more factors
must be considered to apply equation (1). First, since the
exposure times are set independently as ExTred for CamR
and CamL, and as ExTNIR for CamC camera, we need to
consider their difference by applying to the values in RedC
a multiplicative correction factor δ:

δ = ExTNIR/ExTred . (3)

The second factor is the difference in the efficiency of the
filter/camera systems in the two bands. In particular, the total
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Fig. 5: Parabolic functions Λc for ωc, c = 1, . . . , 4.

(a)

cluster centers mc

ω4 -0.2
ω3 0.12
ω2 0.35
ω1 0.70

(b)

transition values bk
ω4/ω3 0
ω3/ω2 0.24
ω2/ω1 0.46

TABLE I: Class centers and transition values of the four
detected classes.

efficiencies Totred and TotNIR of the red filter/camera and
NIR filter/camera are respectively:

Totred =
∫
Ered dλ = 303.07

TotNIR =
∫
ENIR dλ = 433.62 . (4)

However, equation (1) requires pure spectral values collected
by sensors with the same efficiency in order to be applied.
Hence, another multiplicative correction factor α must be
applied to RedC:

α = Totred/TotNIR = 1.43 . (5)

Considering the value of a pixel from the reconstructed
image RedCi,j and the corresponding pixel in the NIRCi,j
and considering the two correction factors (3) and (5), the
pixel-by-pixel NDVI values must be computed as:

NDV Ii,j =
NIRCi,j −RedCi,j · α · δ
NIRCi,j +RedCi,j · α · δ

(6)

where NDV Ii,j is the element at the i-th row and j-th
column of the matrix NDV I .

B. Clustering

Using NDV I computed through equation (6) it is possible
to classify the observed materials, i.e.: to assign to each pixel
xi,j ∈ NDV I a label ωi,j among the set of possible labels
Ω = {ω1, ω2, ω3, ω4} following the rules in equation (2). For
visualization purpose, the ωi,j can be collected in an image
Cl whose pixels Cli,j are defined as a function of ωi,j :
Cli,j = Cli,j(ωi,j). However, due to possible mismatches
between RedC and NIRC, difference in the illuminations,
etc., NDV I will be affected by consistent noise and Cl will
contain many errors in the classification. Hence, we apply
a more robust classification based on the fuzzy K-means
clustering, whose first step consists in computing for each
pixel xi,j ∈ NDV I the membership values

Pspec(xi,j |ωc) =
Λc(xi,j)∑4
h=1 Λh(xi,j)

, c = 1, . . . , 4 (7)

where Λc(xi,j) is the probability that a surface of class
ωc produces an NDVI value equal to xi,j . Note that∑n
c=1 Pspec(xi,j |ωc) = 1, hence Pspec(xi,j |ωc), c =

1, . . . , 4 is a proper probability distribution describing the
probability that xi,j was originated by a surface of class ωc.

In general, the functions Λc(xi,j) can be experimentally
estimated. However, given the popularity of the NDVI, it is
also possible to retrieve plausible values from literature. The
plots of the functions Λc that we have used in this work are
shown in Fig. 5. In order to analytically describe Λc, we
have chosen parabolic functions identified by their vertex
(mc, 1) and one point (bk, 0.5), where mc, c = 1, . . . , 4 are
the center of the classes and bk, k = 1, 2, 3 are the transition
values from one class to another. The values of mc and bk
used in this work, retrieved from literature ([17], [18]), are
available in Tables Ia and Ib respectively.

The row Pspec(xi,j |ωc) probabilities are used as initializa-
tion values for the membership probability P (ωc|xi,j), which
expresses the probability that the pixel xi,j is originated from
a surface of type ωc. The P (ωc|xi,j) are then iteratively
updated using the information from the neighborhood Γ(xi,j)
of the pixel, which is constituted by the pixels contained in
an l×l window centered in xi,j , except xi,j itself. In order to
take into account the interaction between neighboring pixels,
Besag [20] introduced the concept of neighborhood potential
U(xi,j), which we compute as

U(xi,j |ωc) =
∑

x∈Γ(xi,j)

[1− P (ωc|x)]. (8)

Then, the spatial membership Pspat(xi,j |ωc) probability
can be computed as:

Pspat(xi,j |ωc) = γe−βU(xi,j |ωc) (9)

where β is a positive coefficient used for weighting the
influence of the spatial context and γ is a normalization factor
such that

∑4
c=1 Pspat(xi,j |ωc) = 1. Anyway, it is not needed

to actually compute γ since it will elide in the next equation.
If β is small the influence of the spatial contest will have an
important weight in the final computation of Pspat. The last
step is to compute the combined spectral-spatial probability
P (ωc|xi,j), which is also the total probability assigned to a
pixel xi,j to belong to a certain cluster ωc

P (ωc|xi,j) =
Pspec(xi,j |ωc) · Pspatial(xi,j |ωc)∑
c′ [Pspec(xi,j |ωc′) · Pspatial(xi,j |ωc′)]

n∑
c=1

P (ωc|xi,j) = 1 . (10)

Equations (8)-(10) are iteratively repeated for a fixed num-
ber of iterations (5 in our case), and the final P (ωc|xi,j) is
used to create Cl following a maximum probability criterion.

V. EXPERIMENTAL RESULTS

We have tested the developed system collecting multi-
ple videos using a handheld version of the camera during
multiple experimental sessions around the campus of the
Max Planck Institute for biological Cybernetics, Tübingen,
Germany. All the computations to process the videos are
performed online producing a classified image, disparity map
and 3D point cloud at about 2fps.

An example of the collected and classified images is
shown in Fig. 6. On top, from left to right, we show the
three camera inputs RedL, NIRC and RedR. The scene,



Fig. 6: Top: RedL, NIRC and RedR respectively; bottom: NDV I , the classification according to equation (2) and the
classified image after the clustering.

Fig. 7: Top-left: RedL and NIRC respectively; bottom-left: NDV I , the classification and the classified image after the
clustering; right: the reconstructed point-cloud of the healthy vegetation class only.

includes a concrete path in the center, snow on the left, some
vegetation on the right and in the background. In NIRC, it is
possible to observe the bright color of the vegetation, which
means a high reflectance value in the NIR band. Instead, in
the images acquired with the red filter RedL and RedR the
vegetation appears darker. Although the snow looks bright
in both bandwidth, it is brighter in the red band. Finally the
concrete path shows a low reflectance in both bands.

The bottom raw shows in order the raw NDVI matrix
NDV I , the image classified according to equation (2) and
the classified image after the clustering. In order to highlight
the differences among the various classes, in the left image
the NDVI values −1 ≤ NDV I ≤ 1 are scaled to the set
127 ≤ NDV I ≤ 255. The snow, assuming negative NDVI
values, is the darkest part, followed by the concrete, while
the vegetation is relatively bright. The central frame shows
the classification of the image according to equation (2),
where blue, brown, green and dark green areas represent

respectively snow/water, soil/concrete, dry vegetation and
healthy vegetation. Although the classification performed in
the central frame is already quite accurate, the right frame
shows less noise and outliers. Note that the NDVI values
of the vegetation in the central part of the background are
partially corrupted be the presence of a strong light source
(the cloudy sky). This could be a good indication for future
development to discard pixels whose values are too high in
both Red and NIR bands.

A second example showing a closer point of view is pro-
vided in Fig. 7, whose subject is a small tree approximately
70cm tall observed from a distance of 3m. In addition to
RedL, NIRC, NDV I and the classified image, we show
also the 3D reconstruction of the healthy vegetation present
in the image, which includes the tree itself and some small
areas on the left of the image. This information, together
with the classification, can be particularly useful not only to
identify a landmark in the environment and its bearing with
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respect to the camera frame, but also to produce estimates of
its distance and size. From the data of the example in Fig.
7, we can estimate the height of the tree to be 63cm, which
correspond to an error of roughly 10%. The reader is invited
to watch the videos collected during the two experiments in
the accompanying multimedia material.

In order to verify that the data obtained by our sensor
are consistent with the NDVI values found in literature, we
have built a database of materials from our experiments. In
particular, for each material we have selected multiple points
(≥ 100) over multiple frames of many different experiments
and computed the mean and covariance of the corresponding
NDVI values. Fig. 8 shows the results of this statistical
analysis. The median for each material is shown as a red
horizontal line, while 50% of the collected data fits in the
blue boxes, known as the inter-quartile range (IQR). The
extreme values (within 1.5 times the inter-quartile range
from the upper or lower quartile) are the ends of the dashed
vertical lines extending from the IQRs. Points at a greater
distance from the median than 1.5 times the IQR are plotted
individually as red pluses and are considered outliers.

We have studied water, asphalt, snow, concrete, plant
stems and leaves. The results obtained are all congruent
with the values obtained from literature, with the notable
exception of asphalt, for which we expected a slightly higher
value. Nevertheless, this discrepancy may be due either to a
not perfect tuning of the cameras or to the particular observed
asphalt. The computed values can be used in future to build
a more refined classification with more classes.

VI. CONCLUSIONS
In this work, we have designed and implemented a low-

cost low-weight sensor that is able to work both as spec-
tral and stereo camera, consisting of a camera array with
appropriate filters. The combination of these two sensors
allows the extraction of information on the material of the
observed objects and on their distance. As ultimate result, we
are able to create a pointcloud of some selected features, as
for example trees, that can be efficiently used, among other
applications, as landmarks in outdoor navigation.

In future, we plan to optimize our software and port it to
a more compact platform as an Odroid board which can be
embedded on an MAV, having as final goal the processing
of the information at 10Hz. As for further development
of the classification itself, we plan to test the sensor with
multiple materials to create our own database and refine
the number and parameters of the classes. In addition we
would like to study how to exploit the depth-map also

during the fuzzy classification. Finally, we plan to apply the
extracted information to outdoor navigation for landmark-
based navigation and identification of safe landing areas.
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